Solutions to Supplementary Questions for HP Chapter 12

1. 1)
$$\frac{d}{dx}(x^8 \ln x) = 8x^7 \ln x + \frac{x^8}{x} = 8x^7 \ln x + x^7$$

2) $\frac{d^2}{dx^2}(x^8 \ln x) = \frac{d}{dx}(8x^7 \ln x + x^7) = \left(8 \cdot 7x^6 \ln x + \frac{8x^7}{x}\right) + 7x^6$
 $= 8 \cdot 7x^6 \ln x + 8x^6 + 7x^6$

Now note that the power of x in all terms are the same, namely 8-k when we calculate $\frac{d^k}{dx^k}$, so at the 8th derivative, the power of x is zero in all terms. Also note that all terms except for the first term are only a constant times a power of x, so at the eighth derivative, all terms other than the first term become constant. Hence at the 9th derivative, the only term that is nonzero is the first term that includes $\ln x$.

8)
$$\frac{d^8}{dx^8}(x^8\ln x) = 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot x^0 \ln x + \text{ constants}$$

9) $\frac{d^9}{dx^9}(x^8\ln x) = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{x} \quad \left(=\frac{8!}{x}\right)$

2.

$$\begin{aligned} &\frac{d}{dx} [\ln(\ln(\ln x)))] \\ &= \frac{1}{\ln(\ln(\ln x))} \left[\frac{d}{dx} \ln(\ln(\ln x)) \right] \\ &= \frac{1}{\ln(\ln(\ln x))} \left(\frac{1}{\ln(\ln x)} \frac{d}{dx} (\ln(\ln x)) \right) \\ &= \frac{1}{\ln(\ln(\ln x))} \left(\frac{1}{\ln(\ln x)} \right) \frac{1}{\ln x} \frac{d}{dx} (\ln x) \\ &= \frac{1}{\ln(\ln(\ln x))} \left(\frac{1}{\ln(\ln x)} \right) \frac{1}{\ln x} \frac{1}{x} \end{aligned}$$

- **3.** (i) $\frac{d}{dx}x^{(a^a)} = a^a x^{(a^a-1)}$
- (ii) Using the Chain Rule, $\frac{d}{dx}(a^{f(x)}) = a^{f(x)}\ln a(f'(x))$, and hence, $\frac{d}{dx}a^{(x^a)} = a^{(x^a)}\ln a(ax^{a-1})$
- (iii) Similarly, $\frac{d}{dx}a^{(a^x)} = a^{(a^x)}\ln a(\frac{d}{dx}a^x) = a^{(a^x)}\ln a(a^x\ln a) = a^{(a^x)}a^x(\ln a)^2$. So $\frac{d}{dx}\left(x^{(a^a)} + a^{(x^a)} + a^{(a^x)}\right) = a^a x^{(a^a-1)} + a\ln a\left(a^{(x^a)}\right)x^{a-1} + a^{(a^x)}a^x(\ln a)^2$.

4. (a)

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{x}$$
$$= \lim_{h \to 0} \frac{f(x)f(h) - f(x)}{x}$$
$$= \lim_{h \to 0} f(x) \left[\frac{f(h) - 1}{h}\right]$$
$$= f(x) \lim_{h \to 0} \frac{f(h) - f(0)}{h}$$
$$= f(x)f'(0)$$
$$= f(x)$$

(b) We have, for
$$f(x) = e^x$$
,
 $f'(0) = \lim_{h \to 0} \frac{e^h - 1}{h} = 1$.
 $f(0) = e^0 = 1$
 $f(x + z) = e^{x+z} = e^x e^z = f(x)f(z)$ for all x and z.
Applying (a) shows $f(x) = f'(x)$; i.e., $\frac{d}{dx}e^x = e^x$.

5. Let $g(x) = f(x)e^{-cx}$. By the product rule and chain rule we have

$$g'(x) = f'(x)e^{-cx} - f(x)ce^{-cx}$$
$$= cf(x)e^{-cx} - cf(x)e^{-cx}$$
$$= 0$$

Since the derivative of g is zero, and g is defined for all x, we must have g equal to a constant K, g(x) = K, so $K = f(x)e^{-cx}$ and multiplying both sides by e^{cx} gives $f(x) = Ke^{cx}$.

6. (a)

$$\begin{array}{ll} f(x) = \ln(x) & g(x) = ax^2 + bx + c \\ f'(x) = \frac{1}{x} & g'(x) = 2ax + b \\ f''(x) = -\frac{1}{x^2} & g''(x) = 2a \end{array}$$

so we have

$$g(1) = f(1) \implies a+b+c = 0$$

$$g'(1) = f'(1) \implies 2a+b = 1$$

$$g''(1) = f''(1) \implies 2a = -1$$

Solving, we see that $a = -\frac{1}{2}$, b = 2, $c = -\frac{3}{2}$, so $g(x) = -\frac{1}{2}x^2 + 2x - \frac{3}{2}$. (b)

$$f(x) = f'(x) = f''(x) = e^x$$
$$g(x) = ax^2 + bx + c$$
$$g'(x) = 2ax + b$$
$$g''(x) = 2a$$

so we have

$$g(0) = f(0) \implies c = 1$$

$$g'(0) = f'(0) \implies b = 1$$

$$g''(0) = f''(0) \implies 2a = 1 \implies a = \frac{1}{2}$$

so $g(x) = \frac{1}{2}x^2 + x + 1$

7. (a) The principal in the bank account at the beginning of the year will be P(t), and will earn 5% interest compounded annually for a period of 20 - t years.

(b)

$$B'(t) = P'(t)(1.05)^{20-t} - P(t)\ln(1.05)(1.05)^{20-t}$$

so $B'(10) = 5000(1.05)^{10} - 150000\ln(1.05)(1.05)^{10}$
 $= -3776.63$

$$B(11) = B(10) + B'(10)(1)$$

= P(10)(1.05)¹⁰ - 3776.63
= 150000(1.05)¹⁰ - 3776.63
= 240557.56

(c)
$$B(t) = P(t)e^{0.05(20-t)}$$

8. (a)

$$\frac{dq}{dp} = abp^{b-1} \quad \text{so} \quad \eta = \frac{p}{q} \frac{dq}{dp}$$
$$= \frac{p}{q} abp^{b-1}$$
$$= \frac{p}{ap^b} abp^{b-1}$$
$$= b$$

which is a constant.

(b) Using the product rule, we have

$$\frac{p}{q_1q_2}\frac{d(q_1q_2)}{dp} = \frac{p}{q_1q_2}(q_1\frac{dq_2}{dp} + q_2\frac{dq_1}{dp})$$
$$= \frac{p}{q_2}\frac{dq_2}{dp} + \frac{p}{q_1}\frac{dq_1}{dp}$$

- (c) Write $q_1 = 3p^{-5}$, $q_2 = \frac{p-5}{6}$. q_1 has point elasticity -5 by (a). If $q_2 = \frac{p-5}{6}$, $p = 6q_2 + 5$ so q_2 has point elasticity $\frac{p}{p-5}$ which is $-\frac{2}{3}$ when p = 2. From (b), we know that since $q = q_1q_2$, the point elasticity of q when p = 2 is
- $-5 + \frac{-2}{3} = \frac{-17}{3}$.

9. By the chain rule, $\frac{dy}{dx} = \frac{dy}{dp}\frac{dp}{dx}$. For $\frac{dy}{dp}$, we have

$$\frac{dy}{dp} = \frac{d(\ln f(p))}{dp} = \frac{1}{f(p)}f'(p) = \frac{1}{q}\frac{dq}{dp}.$$

For $\frac{dp}{dx}$ we have $x = \ln p$, $p = e^x$, $\frac{dp}{dx} = e^x = p$. Therefore,

$$\frac{dy}{dx} = \frac{dy}{dp}\frac{dp}{dx} = \left(\frac{1}{q}\frac{dq}{dp}\right)p = \frac{p}{q}\frac{dq}{dp} = \eta$$

10. (a) Taking natural logarithms, we have

$$\ln q = a(\ln p) - b(p+c)$$

and differentiating with respect to p, we have

$$\frac{1}{q}\frac{dq}{dp} = \frac{a}{p} - b$$

and

$$\frac{dq}{dp} = \left(\frac{a}{p} - b\right) \left(p^a e^{-b(p+c)}\right)$$

Since $p > \frac{a}{b}$, $\frac{a}{p} < b$ which shows that for all $p > \frac{a}{b}$, $\frac{dq}{dp} < 0$. This means that the demand decreases as the price increases or equivalently, that the demand increases as the price decreases.

(b) Using the equation $\eta = \frac{p}{q} \frac{dq}{dp}$ where η is the point elasticity of demand, we have

$$\eta = \frac{p}{q} \left(\frac{a}{p} - b\right) \left(p^a e^{-b(p+c)}\right)$$
$$= \frac{p}{q} \left(\frac{a}{p} - b\right) q$$
$$= a - bp$$

11.

$$x^{n} = e^{\ln(x^{n})} = e^{n \ln x}$$

$$\Rightarrow \frac{d}{dx}x^{n} = \frac{d}{dx}e^{n \ln x} = e^{n \ln x} \left(\frac{d}{dx}n \ln x\right) = x^{n} \left(\frac{n}{x}\right) = nx^{n-1}$$
OR
$$y = x^{n} \quad \Rightarrow \quad \ln y = n \ln x \quad \Rightarrow \quad \frac{y'}{y} = \frac{n}{x} \quad \Rightarrow \quad y' = x^{n} \left(\frac{n}{x}\right) = nx^{n-1}$$

12. Using implicit differentiation with respect to x,

$$\frac{1}{2\sqrt{x}} + \frac{1}{2\sqrt{y}}\frac{dy}{dx} = 0$$
$$\frac{dy}{dx} = -\frac{2\sqrt{y}}{2\sqrt{x}} = -\sqrt{\frac{y}{x}} \qquad (x \neq 0)$$

An arbitrary point on the curve is $(x_0, (\sqrt{c} - \sqrt{x_0})^2)$, so the tangent line has the following equation (note that $x_0 \neq 0$).

$$y - (\sqrt{c} - \sqrt{x_0})^2 = (x - x_0) \left(-\sqrt{\frac{(\sqrt{c} - \sqrt{x_0})^2}{x_0}} \right)$$
$$y - (\sqrt{c} - \sqrt{x_0})^2 = \frac{(x - x_0)(\sqrt{x_0} - \sqrt{c})}{\sqrt{x_0}}$$

When x = 0, then

$$y = -\frac{x_0}{\sqrt{x_0}}(\sqrt{x_0} - \sqrt{c}) + (\sqrt{c} - \sqrt{x_0})^2$$

= $\sqrt{x_0}(\sqrt{c} - \sqrt{x_0}) + (\sqrt{c} - \sqrt{x_0})^2$
= $(\sqrt{c} - \sqrt{x_0})(\sqrt{c} - \sqrt{x_0} + \sqrt{x_0})$
= $\sqrt{c}(\sqrt{c} - \sqrt{x_0})$

So the y-intercept is $\sqrt{c}(\sqrt{c} - \sqrt{x_0}) = c - \sqrt{cx_0}$. When y = 0 (note that $y_0 \neq 0$),

$$x - x_0 = -\frac{(\sqrt{c} - \sqrt{x_0})^2 \sqrt{x_0}}{\sqrt{x_0} - \sqrt{c}} = (\sqrt{c} - \sqrt{x_0}) \sqrt{x_0}$$
$$x = \sqrt{x_0}(\sqrt{c} - \sqrt{x_0}) + x_0 = \sqrt{x_0c} - x_0 + x_0 = \sqrt{x_0c}$$

so the x intercept is $\sqrt{x_0c}$. The x-intercept and y-intercept have sum $\sqrt{x_0c} + c - \sqrt{cx_0} = c$.

13. (a)
$$f(g(x)) = x$$
. Differentiating, we have $f'(g(x))g'(x) = 1$, so $g'(x) = \frac{1}{f'(g(x))}$.
(b) $g'(x) = \frac{1}{f'(g(x))} = \frac{1}{\left(\frac{1}{e^x}\right)} = e^x f'(x) = \frac{1}{g'(f(x))} = \frac{1}{e^{\ln x}} = \frac{1}{x}$

14. Differentiating implicitly with respect to x, we have

$$2x - x\frac{dy}{dx} - y + 2y\frac{dy}{dx} = 0$$

 \mathbf{SO}

$$\frac{dy}{dx} = \frac{y - 2x}{2y - x}$$

When y = 0,

$$\frac{dy}{dx} = \frac{-2x}{-x} = 2$$

and $x^2 - xy + y^2 = 9$ so when $y = 0, x^2 = 9, x = \pm 3$. The tangent lines have the equations

$$y = 2(x - 3)$$
$$y = 2(x + 3)$$

Since they have the same slope (2) they are parallel.

15. Differentiating the equation of the circle implicitly with respect to x,

$$2(x-a) + 2(y-b)\frac{dy}{dx} = 0$$

$$(x-a) + (y-b)\frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = -\frac{(x-a)}{(y-b)}$$
(1)

Differentiating equation (1) implicitly with respect to x,

$$1 + \left(\frac{dy}{dx}\right)^2 + (y-b)\frac{d^2y}{dx^2} = 0$$

$$1 + \left(\frac{dy}{dx}\right)^2 = -(y-b)\frac{d^2y}{dx^2}$$

$$\left[1 + \left(\frac{x-a}{y-b}\right)^2\right] \left(-\frac{1}{(y-b)}\right) = \frac{d^2y}{dx^2}$$
(2)

Taking both sides of equation (2) to the power $\frac{3}{2}$, we have

$$\left[1 + \left(\frac{dy}{dx}\right)^{2}\right]^{\frac{3}{2}} = -(y-b)\frac{d^{2}y}{dx^{2}}\sqrt{-(y-b)\frac{d^{2}y}{dx^{2}}}$$
$$= -(y-b)\frac{d^{2}y}{dx^{2}}\sqrt{1 + \left(\frac{x-a}{y-b}\right)^{2}}$$
$$= -(y-b)\frac{d^{2}y}{dx^{2}}\sqrt{\frac{(x-a)^{2} + (y-b)^{2}}{(y-b)^{2}}}$$
$$= -(y-b)\frac{d^{2}y}{dx^{2}}\sqrt{\frac{r^{2}}{(y-b)^{2}}}$$
$$= \pm r\frac{d^{2}y}{dx^{2}}$$

Therefore,
$$\frac{1}{r} = \pm \frac{\frac{d^2 y}{dx^2}}{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}$$
; or $\frac{1}{r} = \left|\frac{\frac{d^2 y}{dx^2}}{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{\frac{3}{2}}}\right|$

16. Differentiating implicitly the first equation with respect to z,

$$y + z\frac{dy}{dz} + y3z^2 + z^3\frac{dy}{dz} = 0$$
$$(z + z^3)\frac{dy}{dz} = -y(1 + 3z^2)$$
$$\frac{dy}{dz} = -\frac{y(1 + 3z^2)}{z + z^3}$$

and also differentiating the second question with respect to x,

$$2xz + x^{2}\frac{dz}{dx} + 3z^{2} + 6xz\frac{dz}{dx} = 6x^{2}y + 2x^{3}\frac{dy}{dx}$$
$$(x^{2} + 6xz)\frac{dz}{dx} = 6x^{2}y - 2xz - 3z^{2} + 2x^{3}\frac{dy}{dx}$$
$$\frac{dz}{dx} = \frac{6x^{2}y - 2xz - 3z^{2} + 2x^{3}\frac{dy}{dx}}{x^{2} + 6xz}$$

By the chain rule, $\frac{dy}{dx} = \frac{dy}{dz}\frac{dz}{dx}$, so

$$\frac{dy}{dx} = -y\frac{(1+3z^2)}{z+z^3} \cdot \frac{6x^2y - 2xz - 3z^2 + 2x^3\frac{dy}{dx}}{x^2 + 6xz}$$

Solving for $\frac{dy}{dx}$ we have

$$\begin{aligned} (z+z^3)(x^2+6xz)\frac{dy}{dx} &= -y(1+3z^2)(6x^2y-2xz-3z^2+2x^3\frac{dy}{dx})\\ \frac{(z+z^3)(x^2+6xz)}{-y(1+3z^2)}\frac{dy}{dx} &= 6x^2y-2xz-3z^2+2x^3\frac{dy}{dx}\\ \left[2x^3+\frac{(z+z^3)(x^2+6xz)}{y(1+3z^2)}\right]\frac{dy}{dx} &= 2xz+3z^2-6x^2y\\ \frac{dy}{dx} &= \frac{(2xz+3z^2-6x^2y)y(1+3z^2)}{y(1+3z^2)(x^2+6xz)}\end{aligned}$$

17. Set
$$y = \frac{e^x \sqrt{x^5 + 2}}{(x+1)^4 (x^2+3)^2}$$
 Then

$$\ln y = \ln \left(\frac{e^x \sqrt{x^5 + 2}}{(x+1)^4 (x^2+3)^2} \right)$$

$$= \ln(e^x) + \ln \sqrt{x^5 + 2} - \ln(x+1)^4 - \ln(x^2+3)^2$$

$$= x + \frac{1}{2} \ln(x^5+2) - 4 \ln(x+1) - 2 \ln(x^2+3)$$

Differentiating both sides with respect to x gives

$$\begin{aligned} \frac{d\ln y}{dx} &= \frac{d}{dx} \left[x + \frac{1}{2} \ln(x^5 + 2) - 4 \ln(x + 1) - 2 \ln(x^2 + 3) \right] \\ \Rightarrow \frac{y'}{y} &= 1 + \frac{\frac{d}{dx}(x^5 + 2)}{2(x^5 + 2)} - \frac{4(\frac{d}{dx}(x + 1))}{x + 1} - \frac{2(\frac{d}{dx}(x^2 + 3))}{x^2 + 3} \\ \Rightarrow \frac{y'}{y} &= 1 + \frac{5x^4}{2(x^5 + 2)} - \frac{4}{x + 1} - \frac{4x}{x^2 + 3} \end{aligned}$$

Substituting back in $y = \frac{e^x \sqrt{x^5 + 2}}{(x+1)^4 (x^2+3)^2}$ and solving for y' gives

$$y' = \frac{e^x \sqrt{x^5 + 2}}{(x+1)^4 (x^2 + 3)^2} \left(1 + \frac{5x^4}{2(x^5 + 2)} - \frac{4}{x+1} - \frac{4x}{x^2 + 3} \right)$$

18. (a) First, set $u = x^x$. Then

$$\ln u = \ln(x^{x}) = x \ln x$$
$$\Rightarrow \frac{u'}{u} = \ln x + \frac{x}{x} = \ln x + 1$$
$$\Rightarrow u' = x^{x} (\ln x + 1)$$

Now, set $y = x^{(x^x)}$. Then $\ln y = \ln x^{(x^x)} = x^x \ln x$. Taking the derivative of both sides gives

$$\frac{y'}{y} = x^x (\ln x + 1) \ln x + \frac{x^x}{x}$$
$$\Rightarrow y' = x^{(x^x)} \left[x^x ((\ln x)^2 + \ln x) + x^{x-1} \right]$$

(b) $y = x^{\ln x} \Rightarrow \ln y = \ln(x^{\ln x}) = \ln x(\ln x) = (\ln x)^2$. Taking the derivative of both sides gives

$$\frac{y'}{y} = 2(\ln x) \left[\frac{d}{dx} (\ln x) \right] = \frac{2(\ln x)}{x}$$
$$\Rightarrow y' = x^{\ln x} \left[\frac{2\ln x}{x} \right] = 2\ln x (x^{(\ln x) - 1})$$

(c) $y = (\ln x)^x \Rightarrow \ln y = \ln(\ln x)^x = x \ln(\ln x)$. Taking the derivative of both sides give

$$\frac{y'}{y} = \ln(\ln x) + \frac{x}{\ln x} \left[\frac{d}{dx} (\ln x) \right]$$
$$= \ln(\ln x) + \frac{x}{x \ln x} = \ln(\ln x) + \frac{1}{\ln(x)}$$
$$\Rightarrow y' = (\ln x)^x \left[\ln(\ln x) + \frac{1}{\ln x} \right]$$

(d) $y = f(x)^{g(x)} \Rightarrow \ln y = \ln(f(x)^{g(x)}) = g(x) \ln(f(x))$. Differentiating both sides gives

$$\frac{y'}{y} = g'(x)\ln(f(x)) + \frac{g(x)f'(x)}{f(x)}$$
$$\Rightarrow y' = f(x)^{g(x)} \left[g'(x)\ln(f(x)) + \frac{g(x)f'(x)}{f(x)}\right]$$

19. (a) We wish to solve $f(x) = x^k - a = 0$, $f'(x) = kx^{k-1}$, so the formula $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$ gives

$$x_{n+1} = x_n - \frac{x_n^k - a}{kx_n^{k-1}}$$

= $x_n - \frac{x_n^k}{kx_n^{k-1}} + \frac{a}{kx_n^{k-1}}$
= $\frac{1}{k} \left[kx_n - x_n + \frac{a}{(x_n)^{k-1}} \right]$
= $\frac{1}{k} \left[(k-1)x_n + \frac{a}{(x_n)^{k-1}} \right]$

(b) Here k = 10, a = 100. Since $1^{10} = 1$, $2^{10} = 1024$, we let $x_0 = 1.5$. The formula then gives

$$x_1 = 1.610122949$$
$$x_2 = 1.58659981$$
$$x_3 = 1.58490143$$
$$x_4 = 1.584893193$$
$$x_5 = 1.584893193$$

Having obtained $x_4 = x_5$ up to nine digits of accuracy, we may certainly conclude that 1.58489 is accurate to five digits.

20. The equation becomes

$$2000[(1+r)^{30} - 1] = 8000[1 - (1+r)^{-20}]$$
$$(1+r)^{30} - 1 = 4 - 4(1+r)^{-20}]$$

or $f(r) = (1+r)^{30} + 4(1+r)^{-20} - 5 = 0$ with $f'(r) = 30(1+r)^{29} - 80(1+r)^{-21}$. Newton's method gives

$$r_{n+1} = r_n - \frac{(1+r_n)^{30} + 4(1+r_n)^{-20} - 5}{30(1+r_n)^{29} - 80(1+r_n)^{-21}}$$

With an initial guess of $r_{=}0.05$, the iterates are

$$r_0 = 0.05$$

 $r_1 = 0.041247105$
 $r_2 = 0.03894101$
 $r_3 = 0.038779215$
 $r_4 = 0.038778432$

 r_3 and r_4 are the same to five decimal digits, so we may conclude r_4 is accurate to four decimal digits, indicating the interest rate was 3.88% (rounded off).

21. Plugging in the values for P, L, p, g, we have $160z = e^{70z} - e^{-70z}$ where $z = \frac{2.4525}{T}$. Therefore we wish to solve $f(z) = e^{70z} - e^{-70z} - 160z = 0$. $f'(z) = 70e^{70z} + 70e^{-70z} - 160$. The Newton's method formula gives

$$x_{n+1} = x_n - \frac{e^{70x_n} - e^{-70x_n} - 160x_n}{70e^{70x_n} + 70e^{-70x_n} - 160}$$

We then have

$$\begin{array}{ll} x_0 = 0.05 & T_0 = 49.05 \\ x_1 = 0.038387507 & T_1 = 63.8880 \\ x_2 = 0.028674915 & T_2 = 85.5277 \\ x_3 = 0.021330325 & T_3 = 114.9771 \\ x_4 = 0.016467949 & T_4 = 148.9256 \\ x_5 = 0.01388673 & T_5 = 176.6075 \\ x_6 = 0.01304748 & T_6 = 187.9673 \\ x_7 = 0.012958021 & T_7 = 189.2650 \\ x_8 = 0.012957042 & T_8 = 189.2793 \\ x_9 = 0.01295704 & T_9 = 189.2793 \end{array}$$

Since $T_8 = T_9$ up to four digits of accuracy, we may certainly conclude T = 189.3 is accurate to one digit (rounded off).

22. Since $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = 0 = f(0)$, f is continuous at x = 0. Everywhere else f is a polynomial, so f is continuous.

We use the definition of derivative to determine if f has a derivative at x = 0. Let $\operatorname{sgn}(x)$ be the function defined by $\operatorname{sgn}(x) = \begin{cases} 1; & x > 0 \\ 0; & x = 0 \\ -1; & x < 0 \end{cases}$. Then

$$\lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{\operatorname{sgn}(h)\frac{1}{2}(h)^2}{h} - 0$$
$$= \lim_{h \to 0} \frac{1}{2}\operatorname{sgn}(h)h$$
$$= 0$$

so f'(0) = 0.

Everywhere else f has the usual derivative of a polynomial, so we may write

$$f'(x) = \begin{cases} x; & x \ge 0\\ -x; & x < 0 \end{cases}$$
$$= |x|$$

As shown in the text, example 2, page 637, f'(x) is not differentiable at x = 0 so f(x) does not have a second derivative at x = 0 but does have a derivative at x = 0.

23. (a) Each derivative reduces the powers of x by 1, up until $x^0 = 1$, whose derivative is 0. Taking ten derivatives will therefore give 0.

(b) By the above argument, we need only consider $3x^9 + 5x^8$. The eighth derivative is

$$3 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot x + 5 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2$$

= 3(9!)x + 5(8!) = 1088640x + 201600

- (c) $g(t) = 3t^{27} + 5t^{24} + t^{18} + 5t^{15} 4t^9 t^3 + 1$. By the same argument as (a), the 28th derivative will be zero.
- (d) We need only consider $3t^{27}$ since the other terms will have 26^{th} derivatives of 0. The 26^{th} derivative is 3(27!)t.

24. The velocity of the particle is $x'(t) = Ace^{ct} - Bce^{-ct}$ and the acceleration is $x''(t) = Ac^2e^{ct} + Bc^2e^{-ct} = c^2(Ae^{ct} + Be^{-ct}) = c^2x(t)$ so the acceleration is given by the constant c^2 multiplied with the position, i.e., the acceleration is proportional to the position.