Solutions to Supplementary Questions for HP Chapter 12

1. 2) $\frac{d}{d x}\left(x^{8} \ln x\right)=8 x^{7} \ln x+\frac{x^{8}}{x}=8 x^{7} \ln x+x^{7}$
2) $\frac{d^{2}}{d x^{2}}\left(x^{8} \ln x\right)=\frac{d}{d x}\left(8 x^{7} \ln x+x^{7}\right)=\left(8 \cdot 7 x^{6} \ln x+\frac{8 x^{7}}{x}\right)+7 x^{6}$ $=8 \cdot 7 x^{6} \ln x+8 x^{6}+7 x^{6}$

Now note that the power of x in all terms are the same, namely $8-k$ when we calculate $\frac{d^{k}}{d x^{k}}$, so at the $8^{\text {th }}$ derivative, the power of x is zero in all terms. Also note that all terms except for the first term are only a constant times a power of x, so at the eighth derivative, all terms other than the first term become constant. Hence at the $9^{\text {th }}$ derivative, the only term that is nonzero is the first term that includes $\ln x$.
8) $\frac{d^{8}}{d x^{8}}\left(x^{8} \ln x\right)=8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \cdot x^{0} \ln x+$ constants
9) $\frac{d^{9}}{d x^{9}}\left(x^{8} \ln x\right)=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{x} \quad\left(=\frac{8!}{x}\right)$
2.

$$
\begin{aligned}
& \frac{d}{d x}[\ln (\ln (\ln (\ln x)))] \\
& =\frac{1}{\ln (\ln (\ln x))}\left[\frac{d}{d x} \ln (\ln (\ln x))\right] \\
& =\frac{1}{\ln (\ln (\ln x))}\left(\frac{1}{\ln (\ln x)} \frac{d}{d x}(\ln (\ln x))\right) \\
& =\frac{1}{\ln (\ln (\ln x))}\left(\frac{1}{\ln (\ln x)}\right) \frac{1}{\ln x} \frac{d}{d x}(\ln x) \\
& =\frac{1}{\ln (\ln (\ln x))}\left(\frac{1}{\ln (\ln x)}\right) \frac{1}{\ln x} \frac{1}{x}
\end{aligned}
$$

3. (i) $\frac{d}{d x} x^{\left(a^{a}\right)}=a^{a} x^{\left(a^{a}-1\right)}$
(ii) Using the Chain Rule, $\frac{d}{d x}\left(a^{f(x)}\right)=a^{f(x)} \ln a\left(f^{\prime}(x)\right)$, and hence, $\frac{d}{d x} a^{\left(x^{a}\right)}$ $=a^{\left(x^{a}\right)} \ln a\left(a x^{a-1}\right)$
(iii) Similarly, $\frac{d}{d x} a^{\left(a^{x}\right)}=a^{\left(a^{x}\right)} \ln a\left(\frac{d}{d x} a^{x}\right)=a^{\left(a^{x}\right)} \ln a\left(a^{x} \ln a\right)=a^{\left(a^{x}\right)} a^{x}(\ln a)^{2}$.

So $\frac{d}{d x}\left(x^{\left(a^{a}\right)}+a^{\left(x^{a}\right)}+a^{\left(a^{x}\right)}\right)=a^{a} x^{\left(a^{a}-1\right)}+a \ln a\left(a^{\left(x^{a}\right)}\right) x^{a-1}+a^{\left(a^{x}\right)} a^{x}(\ln a)^{2}$.
4. (a)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{x} \\
& =\lim _{h \rightarrow 0} \frac{f(x) f(h)-f(x)}{x} \\
& =\lim _{h \rightarrow 0} f(x)\left[\frac{f(h)-1}{h}\right] \\
& =f(x) \lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} \\
& =f(x) f^{\prime}(0) \\
& =f(x)
\end{aligned}
$$

(b) We have, for $f(x)=e^{x}$,

$$
\begin{aligned}
& f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1 \\
& f(0)=e^{0}=1 \\
& f(x+z)=e^{x+z}=e^{x} e^{z}=f(x) f(z) \text { for all } x \text { and } z .
\end{aligned}
$$

Applying (a) shows $f(x)=f^{\prime}(x)$; i.e., $\frac{d}{d x} e^{x}=e^{x}$.
5. Let $g(x)=f(x) e^{-c x}$. By the product rule and chain rule we have

$$
\begin{aligned}
g^{\prime}(x) & =f^{\prime}(x) e^{-c x}-f(x) c e^{-c x} \\
& =c f(x) e^{-c x}-c f(x) e^{-c x} \\
& =0
\end{aligned}
$$

Since the derivative of g is zero, and g is defined for all x, we must have g equal to a constant $K, g(x)=K$, so $K=f(x) e^{-c x}$ and multiplying both sides by $e^{c x}$ gives $f(x)=K e^{c x}$.
6. (a)

$$
\begin{array}{lc}
f(x)=\ln (x) & g(x)=a x^{2}+b x+c \\
f^{\prime}(x)=\frac{1}{x} & g^{\prime}(x)=2 a x+b \\
f^{\prime \prime}(x)=-\frac{1}{x^{2}} & g^{\prime \prime}(x)=2 a
\end{array}
$$

so we have

$$
\begin{array}{llc}
g(1)=f(1) & \Rightarrow & a+b+c=0 \\
g^{\prime}(1)=f^{\prime}(1) & \Rightarrow & 2 a+b=1 \\
g^{\prime \prime}(1)=f^{\prime \prime}(1) & \Rightarrow & 2 a=-1
\end{array}
$$

Solving, we see that $a=-\frac{1}{2}, b=2, c=-\frac{3}{2}$, so $g(x)=-\frac{1}{2} x^{2}+2 x-\frac{3}{2}$.

$$
\begin{align*}
& f(x)=f^{\prime}(x)=f^{\prime \prime}(x)=e^{x} \tag{b}\\
& g(x)=a x^{2}+b x+c \\
& g^{\prime}(x)=2 a x+b \\
& g^{\prime \prime}(x)=2 a
\end{align*}
$$

so we have

$$
\begin{aligned}
g(0) & =f(0) \quad \Rightarrow \quad c=1 \\
g^{\prime}(0) & =f^{\prime}(0) \quad \Rightarrow \quad b=1 \\
g^{\prime \prime}(0) & =f^{\prime \prime}(0) \quad \Rightarrow \quad 2 a=1 \quad \Rightarrow \quad a=\frac{1}{2} \\
\text { so } g(x) & =\frac{1}{2} x^{2}+x+1
\end{aligned}
$$

7. (a) The principal in the bank account at the beginning of the year will be $P(t)$, and will earn 5% interest compounded annually for a period of $20-t$ years.
(b)

$$
\begin{aligned}
B^{\prime}(t) & =P^{\prime}(t)(1.05)^{20-t}-P(t) \ln (1.05)(1.05)^{20-t} \\
\text { so } B^{\prime}(10) & =5000(1.05)^{10}-150000 \ln (1.05)(1.05)^{10} \\
& =-3776.63
\end{aligned}
$$

$$
\begin{aligned}
B(11) & =B(10)+B^{\prime}(10)(1) \\
& =P(10)(1.05)^{10}-3776.63 \\
& =150000(1.05)^{10}-3776.63 \\
& =240557.56
\end{aligned}
$$

(c) $B(t)=P(t) e^{0.05(20-t)}$
8. (a)

$$
\begin{aligned}
\frac{d q}{d p}=a b p^{b-1} \quad \text { so } \quad \eta & =\frac{p}{q} \frac{d q}{d p} \\
& =\frac{p}{q} a b p^{b-1} \\
& =\frac{p}{a p^{b}} a b p^{b-1} \\
& =b
\end{aligned}
$$

which is a constant.
(b) Using the product rule, we have

$$
\begin{aligned}
\frac{p}{q_{1} q_{2}} \frac{d\left(q_{1} q_{2}\right)}{d p} & =\frac{p}{q_{1} q_{2}}\left(q_{1} \frac{d q_{2}}{d p}+q_{2} \frac{d q_{1}}{d p}\right) \\
& =\frac{p}{q_{2}} \frac{d q_{2}}{d p}+\frac{p}{q_{1}} \frac{d q_{1}}{d p}
\end{aligned}
$$

(c) Write $q_{1}=3 p^{-5}, q_{2}=\frac{p-5}{6}$. q_{1} has point elasticity -5 by (a). If $q_{2}=\frac{p-5}{6}, p=6 q_{2}+5$ so q_{2} has point elasticity $\frac{p}{p-5}$ which is $-\frac{2}{3}$ when $p=2$.
From (b), we know that since $q=q_{1} q_{2}$, the point elasticity of q when $p=2$ is $-5+\frac{-2}{3}=\frac{-17}{3}$.
9. By the chain rule, $\frac{d y}{d x}=\frac{d y}{d p} \frac{d p}{d x}$. For $\frac{d y}{d p}$, we have

$$
\frac{d y}{d p}=\frac{d(\ln f(p))}{d p}=\frac{1}{f(p)} f^{\prime}(p)=\frac{1}{q} \frac{d q}{d p} .
$$

For $\frac{d p}{d x}$ we have $x=\ln p, p=e^{x}, \frac{d p}{d x}=e^{x}=p$. Therefore,

$$
\frac{d y}{d x}=\frac{d y}{d p} \frac{d p}{d x}=\left(\frac{1}{q} \frac{d q}{d p}\right) p=\frac{p}{q} \frac{d q}{d p}=\eta
$$

10. (a) Taking natural logarithms, we have

$$
\ln q=a(\ln p)-b(p+c)
$$

and differentiating with respect to p, we have

$$
\frac{1}{q} \frac{d q}{d p}=\frac{a}{p}-b
$$

and

$$
\frac{d q}{d p}=\left(\frac{a}{p}-b\right)\left(p^{a} e^{-b(p+c)}\right)
$$

Since $p>\frac{a}{b}, \frac{a}{p}<b$ which shows that for all $p>\frac{a}{b}, \frac{d q}{d p}<0$. This means that the demand decreases as the price increases or equivalently, that the demand increases as the price decreases.
(b) Using the equation $\eta=\frac{p}{q} \frac{d q}{d p}$ where η is the point elasticity of demand, we have

$$
\begin{aligned}
\eta & =\frac{p}{q}\left(\frac{a}{p}-b\right)\left(p^{a} e^{-b(p+c)}\right) \\
& =\frac{p}{q}\left(\frac{a}{p}-b\right) q \\
& =a-b p
\end{aligned}
$$

11.

$$
\begin{aligned}
& x^{n}=e^{\ln \left(x^{n}\right)}=e^{n \ln x} \\
& \Rightarrow \frac{d}{d x} x^{n}=\frac{d}{d x} e^{n \ln x}=e^{n \ln x}\left(\frac{d}{d x} n \ln x\right)=x^{n}\left(\frac{n}{x}\right)=n x^{n-1} \\
& \quad \text { OR } \\
& y=x^{n} \Rightarrow \ln y=n \ln x \quad \Rightarrow \quad \frac{y^{\prime}}{y}=\frac{n}{x} \quad \Rightarrow \quad y^{\prime}=x^{n}\left(\frac{n}{x}\right)=n x^{n-1}
\end{aligned}
$$

12. Using implicit differentiation with respect to x,

$$
\begin{aligned}
& \frac{1}{2 \sqrt{x}}+\frac{1}{2 \sqrt{y}} \frac{d y}{d x}=0 \\
& \frac{d y}{d x}=-\frac{2 \sqrt{y}}{2 \sqrt{x}}=-\sqrt{\frac{y}{x}} \quad(x \neq 0)
\end{aligned}
$$

An arbitrary point on the curve is $\left(x_{0},\left(\sqrt{c}-\sqrt{x_{0}}\right)^{2}\right)$, so the tangent line has the following equation (note that $x_{0} \neq 0$).

$$
\begin{aligned}
& y-\left(\sqrt{c}-\sqrt{x_{0}}\right)^{2}=\left(x-x_{0}\right)\left(-\sqrt{\frac{\left(\sqrt{c}-\sqrt{x_{0}}\right)^{2}}{x_{0}}}\right) \\
& y-\left(\sqrt{c}-\sqrt{x_{0}}\right)^{2}=\frac{\left(x-x_{0}\right)\left(\sqrt{x_{0}}-\sqrt{c}\right)}{\sqrt{x_{0}}}
\end{aligned}
$$

When $x=0$, then

$$
\begin{aligned}
y & =-\frac{x_{0}}{\sqrt{x_{0}}}\left(\sqrt{x_{0}}-\sqrt{c}\right)+\left(\sqrt{c}-\sqrt{x_{0}}\right)^{2} \\
& =\sqrt{x_{0}}\left(\sqrt{c}-\sqrt{x_{0}}\right)+\left(\sqrt{c}-\sqrt{x_{0}}\right)^{2} \\
& =\left(\sqrt{c}-\sqrt{x_{0}}\right)\left(\sqrt{c}-\sqrt{x_{0}}+\sqrt{x_{0}}\right) \\
& =\sqrt{c}\left(\sqrt{c}-\sqrt{x_{0}}\right)
\end{aligned}
$$

So the y-intercept is $\sqrt{c}\left(\sqrt{c}-\sqrt{x_{0}}\right)=c-\sqrt{c x_{0}}$.
When $y=0\left(\right.$ note that $\left.y_{0} \neq 0\right)$,

$$
\begin{aligned}
x-x_{0} & =-\frac{\left(\sqrt{c}-\sqrt{x_{0}}\right)^{2} \sqrt{x_{0}}}{\sqrt{x_{0}}-\sqrt{c}}=\left(\sqrt{c}-\sqrt{x_{0}}\right) \sqrt{x_{0}} \\
x & =\sqrt{x_{0}}\left(\sqrt{c}-\sqrt{x_{0}}\right)+x_{0}=\sqrt{x_{0} c}-x_{0}+x_{0}=\sqrt{x_{0} c}
\end{aligned}
$$

so the x intercept is $\sqrt{x_{0} c}$. The x-intercept and y-intercept have sum $\sqrt{x_{0} c}+c-\sqrt{c x_{0}}=c$.
13. (a) $f(g(x))=x$. Differentiating, we have $f^{\prime}(g(x)) g^{\prime}(x)=1$, so $g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}$.
(b) $g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}=\frac{1}{\left(\frac{1}{e^{x}}\right)}=e^{x} f^{\prime}(x)=\frac{1}{g^{\prime}(f(x))}=\frac{1}{e^{\ln x}}=\frac{1}{x}$
14. Differentiating implicitly with respect to x, we have

$$
2 x-x \frac{d y}{d x}-y+2 y \frac{d y}{d x}=0
$$

so

$$
\frac{d y}{d x}=\frac{y-2 x}{2 y-x}
$$

When $y=0$,

$$
\frac{d y}{d x}=\frac{-2 x}{-x}=2
$$

and $x^{2}-x y+y^{2}=9$ so when $y=0, x^{2}=9, x= \pm 3$. The tangent lines have the equations

$$
\begin{aligned}
& y=2(x-3) \\
& y=2(x+3)
\end{aligned}
$$

Since they have the same slope (2) they are parallel.
15. Differentiating the equation of the circle implicitly with respect to x,

$$
\begin{align*}
2(x-a)+2(y-b) \frac{d y}{d x} & =0 \\
(x-a)+(y-b) \frac{d y}{d x} & =0 \tag{1}\\
\frac{d y}{d x} & =-\frac{(x-a)}{(y-b)}
\end{align*}
$$

Differentiating equation (1) implicitly with respect to x,

$$
\begin{align*}
1+\left(\frac{d y}{d x}\right)^{2}+(y-b) \frac{d^{2} y}{d x^{2}} & =0 \\
1+\left(\frac{d y}{d x}\right)^{2} & =-(y-b) \frac{d^{2} y}{d x^{2}} \tag{2}\\
{\left[1+\left(\frac{x-a}{y-b}\right)^{2}\right]\left(-\frac{1}{(y-b)}\right) } & =\frac{d^{2} y}{d x^{2}}
\end{align*}
$$

Taking both sides of equation (2) to the power $\frac{3}{2}$, we have

$$
\begin{aligned}
{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}} } & =-(y-b) \frac{d^{2} y}{d x^{2}} \sqrt{-(y-b) \frac{d^{2} y}{d x^{2}}} \\
& =-(y-b) \frac{d^{2} y}{d x^{2}} \sqrt{1+\left(\frac{x-a}{y-b}\right)^{2}} \\
& =-(y-b) \frac{d^{2} y}{d x^{2}} \sqrt{\frac{(x-a)^{2}+(y-b)^{2}}{(y-b)^{2}}} \\
& =-(y-b) \frac{d^{2} y}{d x^{2}} \sqrt{\frac{r^{2}}{(y-b)^{2}}} \\
& = \pm r \frac{d^{2} y}{d x^{2}}
\end{aligned}
$$

Therefore, $\frac{1}{r}= \pm \frac{\frac{d^{2} y}{d x^{2}}}{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}}$; or $\frac{1}{r}=\left|\frac{\frac{d^{2} y}{d x^{2}}}{\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}}\right|$
16. Differentiating implicitly the first equation with respect to z,

$$
\begin{aligned}
y+z \frac{d y}{d z}+y 3 z^{2}+z^{3} \frac{d y}{d z} & =0 \\
\left(z+z^{3}\right) \frac{d y}{d z} & =-y\left(1+3 z^{2}\right) \\
\frac{d y}{d z} & =-\frac{y\left(1+3 z^{2}\right)}{z+z^{3}}
\end{aligned}
$$

and also differentiating the second question with respect to x,

$$
\begin{aligned}
2 x z+x^{2} \frac{d z}{d x}+3 z^{2}+6 x z \frac{d z}{d x} & =6 x^{2} y+2 x^{3} \frac{d y}{d x} \\
\left(x^{2}+6 x z\right) \frac{d z}{d x} & =6 x^{2} y-2 x z-3 z^{2}+2 x^{3} \frac{d y}{d x} \\
\frac{d z}{d x} & =\frac{6 x^{2} y-2 x z-3 z^{2}+2 x^{3} \frac{d y}{d x}}{x^{2}+6 x z}
\end{aligned}
$$

By the chain rule, $\frac{d y}{d x}=\frac{d y}{d z} \frac{d z}{d x}$, so

$$
\frac{d y}{d x}=-y \frac{\left(1+3 z^{2}\right)}{z+z^{3}} \cdot \frac{6 x^{2} y-2 x z-3 z^{2}+2 x^{3} \frac{d y}{d x}}{x^{2}+6 x z}
$$

Solving for $\frac{d y}{d x}$ we have

$$
\begin{aligned}
\left(z+z^{3}\right)\left(x^{2}+6 x z\right) \frac{d y}{d x} & =-y\left(1+3 z^{2}\right)\left(6 x^{2} y-2 x z-3 z^{2}+2 x^{3} \frac{d y}{d x}\right) \\
\frac{\left(z+z^{3}\right)\left(x^{2}+6 x z\right)}{-y\left(1+3 z^{2}\right)} \frac{d y}{d x} & =6 x^{2} y-2 x z-3 z^{2}+2 x^{3} \frac{d y}{d x} \\
{\left[2 x^{3}+\frac{\left(z+z^{3}\right)\left(x^{2}+6 x z\right)}{y\left(1+3 z^{2}\right)}\right] \frac{d y}{d x} } & =2 x z+3 z^{2}-6 x^{2} y \\
\frac{d y}{d x} & =\frac{\left(2 x z+3 z^{2}-6 x^{2} y\right) y\left(1+3 z^{2}\right)}{y\left(1+3 z^{2}\right) 2 x^{3}+\left(z+z^{3}\right)\left(x^{2}+6 x z\right)}
\end{aligned}
$$

17. Set $y=\frac{e^{x} \sqrt{x^{5}+2}}{(x+1)^{4}\left(x^{2}+3\right)^{2}}$ Then

$$
\begin{aligned}
\ln y & =\ln \left(\frac{e^{x} \sqrt{x^{5}+2}}{(x+1)^{4}\left(x^{2}+3\right)^{2}}\right) \\
& =\ln \left(e^{x}\right)+\ln \sqrt{x^{5}+2}-\ln (x+1)^{4}-\ln \left(x^{2}+3\right)^{2} \\
& =x+\frac{1}{2} \ln \left(x^{5}+2\right)-4 \ln (x+1)-2 \ln \left(x^{2}+3\right)
\end{aligned}
$$

Differentiating both sides with respect to x gives

$$
\begin{aligned}
& \frac{d \ln y}{d x}=\frac{d}{d x}\left[x+\frac{1}{2} \ln \left(x^{5}+2\right)-4 \ln (x+1)-2 \ln \left(x^{2}+3\right)\right] \\
& \Rightarrow \frac{y^{\prime}}{y}=1+\frac{\frac{d}{d x}\left(x^{5}+2\right)}{2\left(x^{5}+2\right)}-\frac{4\left(\frac{d}{d x}(x+1)\right)}{x+1}-\frac{2\left(\frac{d}{d x}\left(x^{2}+3\right)\right)}{x^{2}+3} \\
& \Rightarrow \frac{y^{\prime}}{y}=1+\frac{5 x^{4}}{2\left(x^{5}+2\right)}-\frac{4}{x+1}-\frac{4 x}{x^{2}+3}
\end{aligned}
$$

Substituting back in $y=\frac{e^{x} \sqrt{x^{5}+2}}{(x+1)^{4}\left(x^{2}+3\right)^{2}}$ and solving for y^{\prime} gives

$$
y^{\prime}=\frac{e^{x} \sqrt{x^{5}+2}}{(x+1)^{4}\left(x^{2}+3\right)^{2}}\left(1+\frac{5 x^{4}}{2\left(x^{5}+2\right)}-\frac{4}{x+1}-\frac{4 x}{x^{2}+3}\right)
$$

18. (a) First, set $u=x^{x}$. Then

$$
\begin{aligned}
& \ln u=\ln \left(x^{x}\right)=x \ln x \\
& \Rightarrow \frac{u^{\prime}}{u}=\ln x+\frac{x}{x}=\ln x+1 \\
& \Rightarrow u^{\prime}=x^{x}(\ln x+1)
\end{aligned}
$$

Now, set $y=x^{\left(x^{x}\right)}$. Then $\ln y=\ln x^{\left(x^{x}\right)}=x^{x} \ln x$. Taking the derivative of both sides gives

$$
\begin{aligned}
& \frac{y^{\prime}}{y}=x^{x}(\ln x+1) \ln x+\frac{x^{x}}{x} \\
& \Rightarrow y^{\prime}=x^{\left(x^{x}\right)}\left[x^{x}\left((\ln x)^{2}+\ln x\right)+x^{x-1}\right]
\end{aligned}
$$

(b) $y=x^{\ln x} \Rightarrow \ln y=\ln \left(x^{\ln x}\right)=\ln x(\ln x)=(\ln x)^{2}$. Taking the derivative of both sides gives

$$
\begin{aligned}
& \frac{y^{\prime}}{y}=2(\ln x)\left[\frac{d}{d x}(\ln x)\right]=\frac{2(\ln x)}{x} \\
& \Rightarrow y^{\prime}=x^{\ln x}\left[\frac{2 \ln x}{x}\right]=2 \ln x\left(x^{(\ln x)-1}\right)
\end{aligned}
$$

(c) $y=(\ln x)^{x} \Rightarrow \ln y=\ln (\ln x)^{x}=x \ln (\ln x)$. Taking the derivative of both sides give

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =\ln (\ln x)+\frac{x}{\ln x}\left[\frac{d}{d x}(\ln x)\right] \\
& =\ln (\ln x)+\frac{x}{x \ln x}=\ln (\ln x)+\frac{1}{\ln (x)} \\
\Rightarrow y^{\prime} & =(\ln x)^{x}\left[\ln (\ln x)+\frac{1}{\ln x}\right]
\end{aligned}
$$

(d) $y=f(x)^{g(x)} \Rightarrow \ln y=\ln \left(f(x)^{g(x)}\right)=g(x) \ln (f(x))$. Differentiating both sides gives

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =g^{\prime}(x) \ln (f(x))+\frac{g(x) f^{\prime}(x)}{f(x)} \\
\Rightarrow y^{\prime} & =f(x)^{g(x)}\left[g^{\prime}(x) \ln (f(x))+\frac{g(x) f^{\prime}(x)}{f(x)}\right]
\end{aligned}
$$

19. (a) We wish to solve $f(x)=x^{k}-a=0, f^{\prime}(x)=k x^{k-1}$, so the formula $x_{n+1}=$ $x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$ gives

$$
\begin{aligned}
x_{n+1} & =x_{n}-\frac{x_{n}^{k}-a}{k x_{n}^{k-1}} \\
& =x_{n}-\frac{x_{n}^{k}}{k x_{n}^{k-1}}+\frac{a}{k x_{n}^{k-1}} \\
& =\frac{1}{k}\left[k x_{n}-x_{n}+\frac{a}{\left(x_{n}\right)^{k-1}}\right] \\
& =\frac{1}{k}\left[(k-1) x_{n}+\frac{a}{\left(x_{n}\right)^{k-1}}\right]
\end{aligned}
$$

(b) Here $k=10, a=100$. Since $1^{10}=1,2^{10}=1024$, we let $x_{0}=1.5$. The formula then gives

$$
\begin{aligned}
& x_{1}=1.610122949 \\
& x_{2}=1.58659981 \\
& x_{3}=1.58490143 \\
& x_{4}=1.584893193 \\
& x_{5}=1.584893193
\end{aligned}
$$

Having obtained $x_{4}=x_{5}$ up to nine digits of accuracy, we may certainly conclude that 1.58489 is accurate to five digits.
20. The equation becomes

$$
\begin{aligned}
2000\left[(1+r)^{30}-1\right] & =8000\left[1-(1+r)^{-20}\right] \\
(1+r)^{30}-1 & \left.=4-4(1+r)^{-20}\right]
\end{aligned}
$$

or $f(r)=(1+r)^{30}+4(1+r)^{-20}-5=0$ with $f^{\prime}(r)=30(1+r)^{29}-80(1+r)^{-21}$. Newton's method gives

$$
r_{n+1}=r_{n}-\frac{\left(1+r_{n}\right)^{30}+4\left(1+r_{n}\right)^{-20}-5}{30\left(1+r_{n}\right)^{29}-80\left(1+r_{n}\right)^{-21}}
$$

With an initial guess of $r=0.05$, the iterates are

$$
\begin{aligned}
r_{0} & =0.05 \\
r_{1} & =0.041247105 \\
r_{2} & =0.03894101 \\
r_{3} & =0.038779215 \\
r_{4} & =0.038778432
\end{aligned}
$$

r_{3} and r_{4} are the same to five decimal digits, so we may conclude r_{4} is accurate to four decimal digits, indicating the interest rate was 3.88% (rounded off).
21. Plugging in the values for P, L, p, g, we have $160 z=e^{70 z}-e^{-70 z}$ where $z=\frac{2.4525}{T}$. Therefore we wish to solve $f(z)=e^{70 z}-e^{-70 z}-160 z=0 . f^{\prime}(z)=70 e^{70 z}+70 e^{-70 z}-160$. The Newton's method formula gives

$$
x_{n+1}=x_{n}-\frac{e^{70 x_{n}}-e^{-70 x_{n}}-160 x_{n}}{70 e^{70 x_{n}}+70 e^{-70 x_{n}}-160}
$$

We then have

$$
\begin{array}{ll}
x_{0}=0.05 & T_{0}=49.05 \\
x_{1}=0.038387507 & T_{1}=63.8880 \\
x_{2}=0.028674915 & T_{2}=85.5277 \\
x_{3}=0.021330325 & T_{3}=114.9771 \\
x_{4}=0.016467949 & T_{4}=148.9256 \\
x_{5}=0.01388673 & T_{5}=176.6075 \\
x_{6}=0.01304748 & T_{6}=187.9673 \\
x_{7}=0.012958021 & T_{7}=189.2650 \\
x_{8}=0.012957042 & T_{8}=189.2793 \\
x_{9}=0.01295704 & T_{9}=189.2793
\end{array}
$$

Since $T_{8}=T_{9}$ up to four digits of accuracy, we may certainly conclude $T=189.3$ is accurate to one digit (rounded off).
22. Since $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=0=f(0), f$ is continuous at $x=0$. Everywhere else f is a polynomial, so f is continuous.

We use the definition of derivative to determine if f has a derivative at $x=0$. Let $\operatorname{sgn}(x)$ be the function defined by $\operatorname{sgn}(x)=\left\{\begin{array}{cl}1 ; & x>0 \\ 0 ; & x=0 \\ -1 ; & x<0\end{array}\right.$. Then

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} & =\lim _{h \rightarrow 0} \frac{\operatorname{sgn}(h) \frac{1}{2}(h)^{2}}{h}-0 \\
& =\lim _{h \rightarrow 0} \frac{1}{2} \operatorname{sgn}(h) h \\
& =0
\end{aligned}
$$

so $f^{\prime}(0)=0$.
Everywhere else f has the usual derivative of a polynomial, so we may write

$$
\begin{aligned}
f^{\prime}(x) & =\left\{\begin{array}{cc}
x ; & x \geq 0 \\
-x ; & x<0
\end{array}\right. \\
& =|x|
\end{aligned}
$$

As shown in the text, example 2, page 637, $f^{\prime}(x)$ is not differentiable at $x=0$ so $f(x)$ does not have a second derivative at $x=0$ but does have a derivative at $x=0$.
23. (a) Each derivative reduces the powers of x by 1 , up until $x^{0}=1$, whose derivative is 0 . Taking ten derivatives will therefore give 0 .
(b) By the above argument, we need only consider $3 x^{9}+5 x^{8}$. The eighth derivative is

$$
\begin{aligned}
& 3 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot x+5 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \\
& =3(9!) x+5(8!)=1088640 x+201600
\end{aligned}
$$

(c) $g(t)=3 t^{27}+5 t^{24}+t^{18}+5 t^{15}-4 t^{9}-t^{3}+1$. By the same argument as (a), the $28^{\text {th }}$ derivative will be zero.
(d) We need only consider $3 t^{27}$ since the other terms will have $26^{\text {th }}$ derivatives of 0 . The $26^{\text {th }}$ derivative is $3(27!) t$.
24. The velocity of the particle is $x^{\prime}(t)=A c e^{c t}-B c e^{-c t}$ and the acceleration is $x^{\prime \prime}(t)=$ $A c^{2} e^{c t}+B c^{2} e^{-c t}=c^{2}\left(A e^{c t}+B e^{-c t}\right)=c^{2} x(t)$ so the acceleration is given by the constant c^{2} multiplied with the position, i.e., the acceleration is proportional to the position.

