Solutions to Supplementary Questions for HP Chapter 11

1. The curve has derivative $3 x^{2}$. Let $\left(x_{0}, x_{0}^{3}\right)$ be any point on the curve. Then the tangent line at this point has slope $3 x_{0}^{2}$, so if $(1,0)$ is on this line, then the line has equation

$$
y=3 x_{0}^{2}(x-1)
$$

Since $\left(x_{0}, x_{0}^{3}\right)$ is also on this line, we must have

$$
\begin{aligned}
x_{0}^{3} & =3 x_{0}^{2}\left(x_{0}-1\right) \\
x_{0}^{3} & =3 x_{0}^{3}-3 x_{0}^{2} \\
2 x_{0}^{3}-3 x_{0}^{2} & =0 \\
x_{0}^{2}\left(2 x_{0}-3\right) & =0
\end{aligned}
$$

so we may conclude $x_{0}=0$ or $x_{0}=\frac{3}{2}$. From the equation $y=3 x_{0}^{2}(x-1)$, we see the two straight lines are $y=0$ and $y=\frac{27}{4}(x-1)$.
2. (a) The curve $y=x^{2}$ has derivative $2 x$, so the tangent line at the point $(2,4)$ has slope 4 , and therefore the normal line has slope $-\frac{1}{4}$ (the negative reciprocal). The equation of the normal line is given by

$$
\begin{aligned}
y-4 & =-\frac{1}{4}(x-2) \\
\Rightarrow y & =-\frac{1}{4} x+\frac{9}{2}
\end{aligned}
$$

(b) Much the same as above, the tangent line at the point $\left(x_{0}, x_{0}^{2}\right)$ has slope $2 x_{0}$ and the normal line has slope $-\frac{1}{2 x_{0}}$, so the equation of the normal line is

$$
\begin{aligned}
& y-x_{0}^{2}=-\frac{1}{2 x_{0}}\left(x-x_{0}\right) \\
& \Rightarrow y=-\frac{1}{2 x_{0}} x+x_{0}^{2}+\frac{1}{2}
\end{aligned}
$$

(c) From (b), we know the normal line of the curve $y=x^{2}$ at an arbitrary point $\left(x_{0}, x_{0}^{2}\right)$ has equation

$$
y=-\frac{1}{2 x_{0}} x+x_{0}^{2}+\frac{1}{2}
$$

If this line passes through $\left(2, \frac{1}{2}\right)$, then the equation must be satisfied by this point, so

$$
\frac{1}{2}=-\frac{1}{2 x_{0}}(2)+x_{0}^{2}+\frac{1}{2}
$$

Solving for x_{0},

$$
\begin{aligned}
& \frac{1}{2}=-\frac{1}{x_{0}}+x_{0}^{2}+\frac{1}{2} \\
& \Rightarrow x_{0}^{2}-\frac{1}{x_{0}}=0 \\
& \Rightarrow x_{0}^{3}-1=0
\end{aligned}
$$

The solution is $x_{0}=1$, so the point $(1,1)$ on the curve $y=x^{2}$ is the only point where the normal line passes through the point $\left(2, \frac{1}{2}\right)$.
3. (a) The curve has derivative $5 x^{4}+2$. Since $x^{4} \geq 0$ for all $x, 5 x^{4}+2 \geq 2$ for all x, and since the derivative is never equal to zero, there is no horizontal tangent line.
(b) The curve has derivative $2 x+a$. If the point $(0,1)$ is on the curve, we must have $1=0^{2}+a(0)+b$ so $b=1$. We must also have the derivative equal to zero at $(0,1)$, so $0=2(0)+a$ which shows $a=0$. Therefore the curve has the equation $y=x^{2}+1$.
4. We can write

$$
|x|^{n}=\left\{\begin{array}{cl}
x^{n} ; & x \geq 0 \\
(-x)^{n} ; & x<0
\end{array}\right.
$$

so for $x \neq 0$ we have

$$
\begin{aligned}
\frac{d}{d x}|x|^{n} & =\left\{\begin{array}{cc}
n x^{n-1} ; & x>0 \\
-n(-x)^{n-1} ; & x<0
\end{array}\right. \\
& =\operatorname{sgn}(x) n|x|^{n-1}
\end{aligned}
$$

where $\operatorname{sgn}(x)$ is the function defined as

$$
\operatorname{sgn}(x)=\left\{\begin{array}{cl}
1 ; & x>0 \\
0 ; & x=0 \\
-1 ; & x<0
\end{array}\right.
$$

For the point $x=0$, going back to the definition of the derivative, we have

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} & =\lim _{h \rightarrow 0} \frac{|h|^{n}}{h} \\
& =\lim _{h \rightarrow 0} \operatorname{sgn}(h)|h|^{n-1} \\
& =0 \quad(\text { since } \operatorname{sgn}(h) \text { is either } 1 \text { or }-1 \text { when } h \text { approaches } 0)
\end{aligned}
$$

So the final answer may be written as $\frac{d}{d x}|x|^{n}=\operatorname{sgn}(x) n|x|^{n-1}$.
5. His change in weight with respect to altitude is $\frac{d w}{d R}=-\frac{4 \times 10^{9}}{R^{3}}$. His change in altitude with respect to time is $\frac{d R}{d t}=16$ miles /week. By the chain rule, his change in weight with respect to time is

$$
\frac{d w}{d t}=\frac{d w}{d R} \frac{d R}{d t}=-\frac{4 \times 10^{9}}{R^{3}} \times 16=-\frac{64 \times 10^{9}}{R^{3}}
$$

His change in weight due to climbing will therefore be $-\frac{64 \times 10^{9}}{R^{3}}-4$ so we wish to solve

$$
-5=\frac{-64 \times 10^{9}}{R^{3}}-4 \Rightarrow R^{3}=64 \times 10^{9} \Rightarrow R=4 \times 10^{3} \text { miles }
$$

At $R=4 \times 10^{3}$ miles from the earth's centre, his weight loss will be the same by either method. From the equation for $\frac{d w}{d R}$ we can see that at a higher altitude he would lose more weight by heavy exercise.
6. The following is a sketch of $P(x)$:

The slope of the line joining $P(x)$ to the origin is highest when it is a tangent line for the function, so we need to compute which tangent line of $P(x)$ goes through the origin.

Given an arbitrary point $\left(x_{0}, P\left(x_{0}\right)\right)$, the tangent line has equation

$$
y-\left(\frac{3 x_{0}-200}{x_{0}+400}\right)=\left(x-x_{0}\right) \frac{1400}{\left(x_{0}+400\right)^{2}}
$$

since $P^{\prime}(x)=\frac{1400}{(x+400)^{2}}$. If the tangent line goes through $(0,0)$, we must have

$$
-\frac{\left(3 x_{0}-200\right)}{x_{0}+400}=-\frac{1400 x_{0}}{\left(x_{0}+400\right)^{2}}
$$

Solving for x_{0},

$$
\begin{aligned}
\left(3 x_{0}-200\right)\left(x_{0}+400\right) & =1400 x_{0} \\
3 x_{0}^{2}-400 x_{0}-80000 & =0
\end{aligned}
$$

Using the quadratic formula, the solutions are

$$
\begin{aligned}
& x_{0}=\frac{400 \pm \sqrt{160000+960000}}{6} \\
& x_{0} \approx 243,-110
\end{aligned}
$$

Ignoring the negative solution (which doesn't make sense) we see that the average profit is maximized when $x \approx 243$, about 243 kg are sold.
7. Suppose n is a negative integer.

$$
\frac{d}{d x}\left(x^{n}\right)=\frac{d}{d x}\left(\frac{1}{x^{-n}}\right)=\frac{(0)\left(x^{-n}\right)-(1)(-n)\left(x^{-n-1}\right)}{x^{-2 n}}
$$

by the quotient rule and the formula above since $-n$ is a positive integer.

$$
\begin{aligned}
& =\frac{n x^{-n-1}}{x^{-2 n}} \\
& =n x^{-n-1+2 n} \\
& =n x^{n-1}
\end{aligned}
$$

8. (a) Differentiating both sides of the formula gives

$$
1+2 x+3 x^{2}+\cdots+n x^{n-1}=\frac{n x^{n+1}-(n+1) x^{n}+1}{(x-1)^{2}}
$$

(b) Multiplying both sides of the above equation by x, we have

$$
x+2 x^{2}+3 x^{3}+\cdots+n x^{n}=\frac{n x^{n+2}-(n+1) x^{n+1}+x}{(x-1)^{2}}
$$

Differentiating gives $1^{2}+2^{2} x+3^{2} x^{2}+\cdots+n^{2} x^{n-1}=$ the horrible derivative of the RHS.
9. Computing derivatives, we have

$$
\begin{array}{ll}
n=1: & \frac{d y}{d x}=\frac{(x+1)(1)-x(1)}{(x+1)^{2}}=\frac{1}{(x+1)^{2}} \\
n=2: & \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{1}{(x+1)^{2}}\right)=\frac{(x+1)^{2}(0)-2(x+1)}{(x+1)^{4}}=\frac{-2}{(x+1)^{3}} \\
n=3: & \frac{d^{3} y}{d x^{3}}=\frac{(x+1)^{3}(0)+(2)(3)(x+1)^{2}}{(x+1)^{6}}=\frac{2 \cdot 3}{(x+1)^{4}} \\
n=4: & \frac{d^{4} y}{d x^{4}}=\frac{(x+1)^{4}(0)+(2)(3)(4)(x+1)^{3}}{(x+1)^{8}}=-\frac{2 \cdot 3 \cdot 4}{(x+1)^{5}}
\end{array}
$$

It is clear that the pattern emerging is

$$
\frac{d^{n} y}{d x^{n}}=\frac{(-1)^{n+1} n!}{(x+1)^{n+1}}
$$

where $n!=n(n-1)(n-2) \ldots(2)(1)$.
10. (a)

$$
\begin{aligned}
\frac{d m}{P d v} & =m_{0}\left(-\frac{1}{2\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{3}{2}}}\right)\left(-\frac{2 v}{c^{2}}\right) \\
& =\frac{m_{0} v}{c^{2}\left(1-\frac{v^{2}}{c^{2}}\right)^{\frac{3}{2}}}
\end{aligned}
$$

(b) The mass of the object will be increasing at a faster rate the closer the velocity is to the speed of light.
11. The information tells us that at the present moment, $\frac{d c}{d q}=12$ and

$$
\frac{d q}{d t}=\frac{\text { change in units }}{\text { change in time (in hours) }}=2 .
$$

So, at the present moment, the chain rule gives $\frac{d c}{d t}=\frac{d c}{d q} \frac{d q}{d t}=(12)(2)=24 . \frac{d c}{d t}$ is the rate of change of cost with respect to time, so, at the present moment the cost is increasing by $\$ 24$ per hour.
12. Using the chain rule, differentiating with respect to time,

$$
\frac{d F}{d t}=\frac{d F}{d r} \frac{d r}{d t}
$$

Differentiating, we have $\frac{d F}{d r}=-\frac{2 G m M}{r^{3}}$ and we know $\frac{d r}{d t}=-100 \mathrm{~km} / \mathrm{h}$ (negative since r is decreasing), so

$$
\begin{aligned}
\frac{d F}{d t} & =-100\left(-\frac{2 G m M}{r^{3}}\right) \\
& =-\frac{100(-2)\left(6.67 \times 10^{-20}\right)(5)\left(5.98 \times 10^{24}\right)}{(6375)^{3}} \\
& =0.0015 \text { Newtons per hour. }
\end{aligned}
$$

13. The derivative of $\underbrace{x^{2}+x^{2}+\cdots+x^{2}}_{x \text { times }}$ is not $\underbrace{2 x+2 x+\cdots+2 x}_{x \text { times }}$ since the number of terms in the sum $2 x+2 x+\cdots+2 x$ is increasing if x is increasing. In fact, if we differentiate $x \cdot x^{2}$ using the product rule, we have $x^{2}+x 2 x=x^{2}+2 x^{2}=3 x^{2}$.
