Solutions to Supplementary Questions for HP Chapter 10

1.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h-x)\left((x+h)^{n-1}+(x+h)^{n-2} x+\cdots+x^{n-1}\right)}{h} \\
& =\lim _{h \rightarrow 0}\left((x+h)^{n-1}+(x+h)^{n-2} x+\cdots+x^{n-1}\right) \\
& =x^{n-1}+x^{n-1}+\cdots+x^{n-1} \quad(\mathrm{n} \text { times }) \\
& =n x^{n-1}
\end{aligned}
$$

2. (a) Let $a=0, f(x)=\frac{1}{x}$, and $g(x)=-\frac{1}{x}$.
(b) Let $a=0, f(x)=\operatorname{sgn}(x)$, and $g(x)=\operatorname{sgn}(x)$, where

$$
\operatorname{sgn}(x):=\left\{\begin{array}{cl}
1 & x>0 \\
0 & x=0 \\
-1 & x<0
\end{array}\right.
$$

3. (a) If $c=0$ then $\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+c x}-1}{x}=\lim _{x \rightarrow 0} \frac{0}{x}=0=\frac{c}{3}$. Otherwise,

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\sqrt[3]{1+c x}-1}{x}=\lim _{x \rightarrow 0} \frac{c(\sqrt[3]{1+c x}-1)}{(1+c x)-1} \\
& =\lim _{x \rightarrow 0} \frac{c(\sqrt[3]{1+c x}-1)}{(\sqrt[3]{1+c x}-1)\left(\sqrt[3]{(1+c x)^{2}}+\sqrt[3]{1+c x}+1\right)} \\
& =\lim _{x \rightarrow 0} \frac{c}{\left(\sqrt[3]{(1+c x)^{2}}+\sqrt[3]{1+c x}+1\right)}=\frac{c}{3}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{\sqrt[3]{x}-1}{\sqrt{x}-1} \\
& =\lim _{x \rightarrow 1} \frac{(\sqrt[3]{x}-1)(\sqrt{x}+1)\left(\sqrt[3]{x}{ }^{2}+\sqrt[3]{x}+1\right)}{(\sqrt{x}-1)(\sqrt{x}+1)\left(\sqrt[3]{x}^{2}+\sqrt[3]{x}+1\right)} \\
& \lim _{x \rightarrow 1} \frac{(x-1)(\sqrt{x}+1)}{(x-1)\left(\sqrt[3]{x^{2}}+\sqrt[3]{x}+1\right)}=\frac{2}{3}
\end{aligned}
$$

4. (a) Not possible to find with the given information.
(b) L
(c) Not possible to find with the given information.
(d) Not possible to find, $-L$, not possible to find.
5. (a)
i) When $x>1,|x-1|=x-1$, and so $\lim _{x \rightarrow 1^{+}} F(x)=\lim _{x \rightarrow 1^{+}} \frac{(x-1)(x+1)}{x-1}=$ $\lim _{x \rightarrow 1^{+}} x+1=2$
ii) When $x<1,|x-1|=-(x-1)$, and so $\lim _{x \rightarrow 1^{-}} F(x)=\lim _{x \rightarrow 1^{-}} \frac{(x-1)(x+1)}{-(x-1)}$ $=\lim _{x \rightarrow 1^{-}}-(x+1)=-2$
(b) No. $\lim _{x \rightarrow 1^{+}} F(x)=2 \neq-2=\lim _{x \rightarrow 1^{-}} F(x)$, so the left-hand limit is not the same as the right-hand limit and thus $\lim _{x \rightarrow 1} F(x)$ does not exist.
(c) (i) When $x>1, F(x)=x+1$ (from (a) i)), and (ii) When $x<1, F(x)=-(x+1)$ (from (a) ii)), (iii) When $x=1, F(x)$ does not exist, so we have:

6. (a) The slope of the line is $\frac{\Delta y}{\Delta x}=\frac{\ln \left(1+\frac{r}{n}\right)-\ln (1)}{\left(1+\frac{r}{n}\right)-1}=\frac{\ln \left(1+\frac{r}{n}\right)}{\frac{r}{n}}=\frac{n}{r} \ln \left(1+\frac{r}{n}\right)$.
(b) Writing $h=\frac{r}{n}$, we have $h \rightarrow 0$ as $n \rightarrow \infty$ so

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n}{r} \ln \left(1+\frac{r}{n}\right) & =\lim _{h \rightarrow 0} \frac{\ln (1+h)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln (1)}{h} \\
& =g^{\prime}(1) \quad(\text { where } g=\ln x)
\end{aligned}
$$

(c)

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n} & =\lim _{n \rightarrow \infty} e^{n \ln \left(1+\frac{r}{n}\right)} \\
& =e^{r g^{\prime}(1)} \quad \text { since the function } e^{x} \text { is continuous and we } \\
& =e^{r} \quad \text { know } \lim _{n \rightarrow \infty} n \ln \left(1+\frac{r}{n}\right)=r g^{\prime}(1)
\end{aligned}
$$

7. (a) For a principal amount of money, $P, P\left(1+\frac{r}{n}\right)^{n}$ is the sum of money resulting from compound interest, compounded n times at the interest rate r, so we should have $P\left(1+\frac{r}{n}\right)^{n}<P\left(1+\frac{r}{n+1}\right)^{n+1}$ which implies $\left(1+\frac{r}{n}\right)^{n}<\left(1+\frac{r}{n+1}\right)^{n+1}$.
(b) In the graph of $y=\ln x$ we can see that $\frac{n+1}{r} \ln \left(1+\frac{r}{n+1}\right)>\frac{n}{r} \ln \left(1+\frac{r}{n}\right)$, the slopes of the lines A and B respectively.

Therefore $(n+1) \ln \left(1+\frac{r}{n+1}\right)>n \ln \left(1+\frac{r}{n}\right)$ and $e^{(n+1) \ln \left(1+\frac{r}{n+1}\right)}>e^{n \ln \left(1+\frac{r}{n}\right)}$ so $(1+$ $\left.\frac{r}{n+1}\right)^{n+1}>\left(1+\frac{r}{n}\right)^{n}$.
8. (a) $f(x)=\left\{\begin{array}{ll}0 ; & 0 \leq x<1 \\ 1 ; & x=1\end{array}\right.$, so $f(x)$ is discontinuous at $x=1$.
(b) $f(x)=\left\{\begin{array}{ll}0 ; & 0 \leq x<1 \\ 1 ; & x>1\end{array}, f(x)\right.$ is undefined at $x=1$. Thus $f(x)$ is discontinuous at $x=1$.
9. For $m<0$, the function is undefined at $x=0$ and is therefore not continuous there. For $m=0, f(x)=1$ and is therefore continuous everywhere. For $m>0, \lim _{x \rightarrow 0} x^{m}=$ $0=f(0)$, so $f(x)$ is continuous at $x=0$. Therefore, it is required that $m \geq 0$ for $f(x)$ to be continuous at $x=0$.
10. (a) $f(x)=(x-a)^{m} f_{1}(x)$, where $f_{1}(a) \neq 0 g(x)=(x-a)^{n} g_{1}(x)$, where $g_{1}(a) \neq 0$ and $m \geq n \geq 1$.
(b) $h(x)=\frac{(x-a)^{m-n} f_{1}(x)}{g_{1}(x)}$
11. (a) When $x^{2}-1=0$, then $f(x)$ is not defined. So we need only consider
i) when $x^{2}-1>0$. Here $f(x)=\frac{x^{2}-1}{x^{2}-1}=1$ is continuous everywhere where $x^{2}-1>0$.
ii) when $x^{2}-1<0$. Similarly, $f(x)=\frac{-\left(x^{2}-1\right)}{x^{2}-1}=-1$ is continuous everywhere where $x^{2}-1<0$.
(b) $f(x)$ is not defined when $x^{2}-1=0$, i.e., when $x \pm 1$
i) If $x=1$, then since
A)

$$
\lim _{x \rightarrow 1^{-}} \frac{\left|x^{2}-1\right|}{x^{2}-1}=\lim _{x \rightarrow 1^{-}}-\frac{\left(x^{2}-1\right)}{x^{2}-1}=-1, \quad \text { and }
$$

B) $\quad \lim _{x \rightarrow 1^{+}} \frac{\left|x^{2}-1\right|}{x^{2}-1}=\lim _{x \rightarrow 1^{+}} \frac{\left(x^{2}-1\right)}{x^{2}-1}=1, \quad$ then
no matter what our choice for $f(1), f$ cannot be continuous at $x=1$ since the left-hand and right-hand limits differ.
ii) Similarly, if $x=-1$, then

$$
\begin{gather*}
\lim _{x \rightarrow-1^{-}} \frac{\left|x^{2}-1\right|}{x^{2}-1}=\frac{\left(x^{2}-1\right)}{x^{2}-1}=1, \quad \text { and } \tag{A}\\
\lim _{x \rightarrow-1^{+}} \frac{\left|x^{2}-1\right|}{x^{2}-1}=-\frac{\left(x^{2}-1\right)}{x^{2}-1}=-1,
\end{gather*}
$$

hence, no value of f can be found at -1 to make f continuous at -1 .

