Supplementary Questions for HP Chapter 10

1. Evaluate $\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h}$, using the identity $a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+\cdots+\right.$ $\left.a b^{n-2}+b^{n-1}\right)$.
2. Show by example that
(a) $\lim _{x \rightarrow a}[f(x)+g(x)]$ may exist even though neither $\lim _{x \rightarrow a} f(x)$ nor $\lim _{x \rightarrow a} g(x)$ exists.
(b) $\lim _{x \rightarrow a}[f(x) g(x)]$ may exist even though neither $\lim _{x \rightarrow a} f(x)$ nor $\lim _{x \rightarrow a} g(x)$ exists.
3. Evaluate
(a) $\lim _{x \rightarrow 0} \frac{\sqrt[3]{1+c x}-1}{x}$
(b) $\lim _{x \rightarrow 1} \frac{\sqrt[3]{x}-1}{\sqrt{x}-1}$
4. A function $f(x)$ is said to be an even function if $f(-x)=f(x)$ for all x in the domain of f, and an odd function if $f(-x)=-f(x)$ for all x in the domain of f.

Suppose $f(x)$ is even and $\lim _{x \rightarrow a^{+}} f(x)=L$.
(a) Find, if possible, $\lim _{x \rightarrow-a} f(x)$.
(b) Find, if possible, $\lim _{x \rightarrow-a^{-}} f(x)$.
(c) Find, if possible, $\lim _{x \rightarrow-a^{+}} f(x)$.
(d) Repeat (a) to (c) for an odd function $f(x)$.
5. Let $F(x)=\frac{x^{2}-1}{|x-1|}$
(a) Find

$$
\begin{array}{ll}
\text { i) } \lim _{x \rightarrow 1^{+}} F(x) & \text { ii) } \lim _{x \rightarrow 1^{-}} F(x)
\end{array}
$$

(b) Does $\lim _{x \rightarrow 1} F(x)$ exist?
(c) Sketch the graph of F.
6. (a) Let r be any positive number. Show that $\frac{n}{r} \ln \left(1+\frac{r}{n}\right)$ is the slope of the straight line connecting $g(1)$ and $g\left(1+\frac{r}{n}\right)$ for the function $g(x)=\ln (x)$.
(b) In light of question (a), what is $\lim _{n \rightarrow \infty} \frac{n}{r} \ln \left(1+\frac{r}{n}\right)$ in terms of the function g ? It may help to write $h=\frac{r}{n}$.
(c) Write $\left(1+\frac{r}{n}\right)^{n}=e^{n \ln \left(1+\frac{r}{n}\right)}$. Show $\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n}=e^{r}$, remembering $g^{\prime}(1)=1$.
7. (a) In terms of compound interest, explain why it is reasonable to expect that

$$
\left(1+\frac{r}{n+1}\right)^{n+1}>\left(1+\frac{r}{n}\right)^{n}
$$

where $r>0, n$ is a positive integer.
(b) Show that $\left(1+\frac{r}{n+1}\right)^{n+1}>\left(1+\frac{r}{n}\right)^{n}$ using the identity $a^{b}=e^{b \ln a}$ and using the fact that $\frac{n}{r} \ln \left(1+\frac{r}{n}\right)$ is the slope of the straight line connecting $g(1)$ and $g\left(1+\frac{r}{n}\right)$ for the function $g(x)=\ln x$.
8. (a) Consider the function $f(x)=\lim _{y \rightarrow \infty} x^{y}$, for $0 \leq x \leq 1$. At what point(s) is $f(x)$ discontinuous?
(b) Consider the function $f(x)=\lim _{y \rightarrow \infty} \frac{x^{y}}{x^{y}-1}$, for $x \geq 0$. At what point(s) is $f(x)$ discontinuous?
9. Consider the function $f(x)=x^{m}$ where m is an integer, with the convention that $0^{0}=1$. What are the condition(s) on m that indicate whether $f(x)$ is continuous at $x=0$?
10. A function $f(x)$ is said to have a removable discontinuity at $x=a$ if $\lim _{x \rightarrow a} f(x)$ exists, but either $f(a)$ is not defined or $\lim _{x \rightarrow a} f(x) \neq f(a)$.
(a) State the (exact) conditions needed for a rational function to have a removable discontinuity at $x=a$.
(b) Given that the rational function $\frac{f(x)}{g(x)}$ has a removable discontinuity at $x=a$, find $h(x)$ such that:

1) $h(x)=\frac{f(x)}{g(x)}(x \neq a)$
2) $h(x)$ does not have a removable discontinuity at $x=a$.
11. Let $f(x)=\frac{\left|x^{2}-1\right|}{x^{2}-1}$.
(a) Explain why $f(x)$ is continuous wherever it is defined.
(b) For each point where $f(x)$ is not defined, state whether a value can be assigned to $f(a)$ in such a way as to make f continuous at a.
