Part 2: Long Answers (60 marks)

Show your work for full marks
2. Evaluate the following limits.
(a) (10 points)

$$
\lim _{x \rightarrow \infty} \frac{(2-x)(2+3 x)}{6 x+x^{2}}
$$

$$
=\lim _{x \rightarrow \infty} \frac{-3 x^{2}+4 x+4}{x^{2}+6 x}
$$

$$
=\lim _{x \rightarrow \infty}
$$

$$
\frac{x^{2}\left(-3+\frac{4}{x}+\frac{4}{x^{2}}\right)}{x^{2}\left(1+\frac{6}{x}\right)}
$$

$$
=\lim _{x \rightarrow \infty} \frac{-3+\frac{4}{x}+\frac{4}{x^{2}}}{1+\frac{6}{x}}
$$

$$
=\frac{-3+0+0}{1+0}
$$

$$
=-3
$$

MAT133Y
(b) (5 points)

Limit DNE as in only defined on $(0, \infty)$.
To calculate the right sided limit, use L'topital's Rule twice:

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} x(\ln x)^{2}=\lim _{x \rightarrow 0^{+}} \frac{(\ln x)^{2}}{\left(\frac{1}{x}\right)} \stackrel{(14}{=} \lim _{x \rightarrow 0^{+}} \frac{\left(\frac{2 \ln x}{x}\right)}{\left(\frac{-1}{x^{2}}\right)} \\
& =\lim _{x \rightarrow 0^{+}}-2 x \ln x=\lim _{x \rightarrow 0^{+}}-2 \cdot \frac{\ln x}{\left(\frac{1}{x}\right)}
\end{aligned}
$$

(LH)

$$
\lim _{x \rightarrow 0^{+}}-2 \cdot \frac{\left(\frac{1}{x}\right)}{\left(\frac{-1}{x^{2}}\right)}=\lim _{x \rightarrow 0^{+}}-2(-x)
$$

$$
=0
$$

3. (a) (8 points) Solve the following inequality for x.

$$
\frac{x^{2}-1}{x^{2}-4}<0
$$

Graph $y=x^{2}-1$ and $y=x^{2}-4$

The inequality holds for all x such that the two parabolas have different sign, which is preeisely the intervals $(-2,-1) \cup(1,2)$
(b) (7 points) Find the values) of x for which $f(x)=\frac{x-2}{x^{2}+x-6}$ is discontinuous. Justify your answer.

Factor the denominator:

$$
f(x)=\frac{x-2}{(x-2)(x+3)}
$$

So, f has discontinuities where the denominator
Vanishes, which is $x=2$ and $x=-3$.
The discontinuity at $x=2$ is remoreable, $\sin c e$ we can extend f to a continuous function \tilde{f} by setting $\tilde{f}(2)=\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x-2}{(x-2)(x+3)}=\frac{1}{5}$
2) a) 10 marks for correct answer with justification, 8 marks for correct answer with no justification (or wrong justification), 8 marks for mostly correct justification but wrong final answer, 5 points for expanding the numerator and stopping there.
b) Almost nobody noticed that the limit is only defined on one side, so I didn't take off marks for that. 5 points for (properly) using L'Hopital twice, minus a mark or two for incorrect algebraic manipulations (for example, a lot of them said that $\left.(\backslash \log x)^{\wedge} 2=2 \backslash \log x\right) .0$ points if they clearly didn't know what they were doing.
3) a) 8 point for correctly finding the proper intervals, 6 points if they made a chart (or tried to make a chart) of where each factor was + and - but didn't properly analyze it, minus a mark or two for algebraic errors.
b) 7 points for correctly identifying the discontinuities at $x=2,-3$. Minus 1 point for failing to note that the discontinuity at $x=2$ is removable (which pretty much everybody did).
4. (${ }^{15}$ points) Let $p=\frac{q^{2}}{5}+\frac{60(q+3)^{1 / 3}}{q}$ and $q=\sqrt{m^{2}+16}$. Let $r=p q$. Determine $\frac{d r}{d m}$ when $m=3$.

$$
\begin{aligned}
& \frac{d q(m)}{d m}=\frac{d(m) 2 \sqrt{m^{2}+16}}{d m} \Rightarrow q(3)=51 . \\
& p(5)=5+24.291 \\
& \text { 2) }\left.\frac{d y}{d m}\right|_{n=3}=\frac{3}{5} \\
& \frac{d p}{d q}=\frac{l}{d q}\left(q^{2} \frac{6}{s}+\frac{60(q+3)^{1 / 3}}{q}\right)= \\
& =\frac{2 q}{5}+\frac{20 q(q+3)^{-2 / 3}-600(q+3)^{1 / 3}}{8^{-2 / 3}} \\
& \frac{d p}{d q} T_{q=25}=\frac{2 \cdot 5}{\frac{5}{5}}+\frac{1008^{-2 / 3}-608^{1 / 3}}{2^{25}}=q^{2} \\
& \frac{d r}{d q}=\frac{d(q p)}{d q}=p+q \frac{d p}{d q}=2+\left(\frac{-19}{5}\right)=\frac{-9}{5} 2 \\
& \left.\Rightarrow \frac{d r}{d q}\right|_{q=5}=p+\left.q \frac{d p}{d q}\right|_{q=5}=29+5 \cdot\left(-\frac{q}{5}\right)=20 \\
& \left.\left.\frac{d r}{d m}\right|_{\substack{m 3 \\
m q^{2 s}}} \frac{d r}{d q} \frac{d q}{d m}\right|_{\substack{m=3 \\
\Rightarrow q=s}}=20 \cdot \frac{3}{s}=12
\end{aligned}
$$

5. (15 points) A particle is travelling with position $f(t)$ at time $t \geq 0$. If

$$
f(t)=(t+1) e^{\frac{1}{2} t^{2}-t}
$$

find the acceleration of the particle. (Hint: find the velocity $v(t)=f^{\prime}(t)$ and then the acceleration $a(t)=v^{\prime}(t)$. You will need the product rule and the chain rule.)

$$
\begin{aligned}
& 7\left\{\begin{aligned}
\frac{d f(t)}{d t} & =(t+1)(t-1) e^{\frac{1}{2} t^{2}-t}
\end{aligned}\right. \\
& =t^{2} e^{\frac{1}{2} t^{2}-t}= \\
& 7 \begin{aligned}
\frac{d^{2} f(t)}{d t^{2}} & =\frac{d}{d t}\left(t^{2} e^{\frac{1}{2} t^{2}-t}\right) \\
& =2 t e^{\frac{1}{2} t^{2}-t^{2}}+t^{2}(t-1) e^{2} e^{\frac{1}{2} t^{2}-t} \\
& =2 t\left(t^{2}-t+2\right) e^{\frac{1}{2} t^{2}-t}
\end{aligned}
\end{aligned}
$$

$$
+1 \text { fine }
$$

> Faculty of Arts and Science
> University of Toronto
> MAT133Y Term Test 2
> Friday June 22, 2018, 9:10 am - 11:00 am
> Duration -110 minutes

Surname:
Given Name: \qquad

Student Number: \qquad
Tutorial Section: \qquad

Multiple Choice Answer Sheet

Question Number	Answer
1	A
2	E
3	E
4	C
6	A
7	B
9	B
10	B

