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Part 1: Short Answers (50 marks)

No justification is necessary and no mark will be awarded for them

1. For each of the following questions, write your final answer in the box on the righthand side. Only your
final answer will be graded.

(a) (5 points) True of False? Suppose that f is integrable, then f is differentiable.
Solution: Consider the function f(x) = |x|. It is integrable since it is continuous. But it is not
differentiable at x = 0 since it has a cusps.

Final Answer

False

(b) (5 points) Compute ∫ 1

0

ex + sin(x) + x5 dx

Solution: ∫ 1

0

ex + sin(x) + x5 dx = ex − cos(x) +
1

6
x6
∣∣∣∣1
0

= e− cos(1) +
1

6

Final Answer

e− cos(1) + 1
6

(c) (5 points) Compute
∫ 1

0
d
dt (e

−t2 ln(1 + t)) dt

Soluion: By FTC, we see that this is e−t
2

ln(1 + t)
∣∣∣1
0

= e−1 ln(2)

Final Answer

e−1 ln(2)

(d) (5 points) Compute

d

dx

∫ x2

0

t+ 1

t2 + 1
dt

.

Solution: Let F (u) =
∫ u
0

t+1
t2+1 dt. The question asks us to compute d

dxF (x2). By the chain rule,

this is F ′(x2)(2x). The FTC, therefore, tells us that

F ′(x2)(2x) =
x2 + 1

(x2)2 + 1
· (2x) =

2x(x2 + 1)

x4 + 1

Final Answer

2x(x2+1)
x4+1
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For the following problems, evaluate each definite integral.

(e) (5 points) ∫ e

1

ln(x)

x
dx

Soluion: We note that d
dx (ln(x)) = 1

x . So we perform the substitution u = ln(x). We see that
du = 1

xdx. It follows that ∫ e

1

ln(x)

x
dx =

∫ 1

0

udu =
1

2
u2
∣∣∣∣1
0

=
1

2

Final Answer

1
2

(f) (5 points) ∫ π

0

sin3(x) dx

Soluion: We note that sin2(x) = 1− cos2(x). So we write our integral as∫ π

0

sin3(x) dx =

∫ π

0

(1− cos2(x)) sin(x)dx

Now, we perform a substitution u = cos(x) with du = − sin(x)dx. It follows that∫ π

0

(1− cos2(x)) sin(x)dx = −
∫ −1
1

(1− u2)du = u− 1

3
u3
∣∣∣∣1
−1

=
4

3

Final Answer

4
3

(g) (5 points) ∫
1

csc(2x) sec(5x)
dx

Solution: We note that 1
csc(2x) sec(5x) = sin(2x) cos(5x). Hence, using the product formula we see

that

sin(2x) cos(5x) =
1

2
(sin(2x+ 5x) + sin(2x− 5x)) =

1

2
(sin(7x)− sin(3x))

We can easily integrate this to obtain 1
6 cos(3x)− 1

14 cos(7x)

Final Answer

1
6 cos(3x)− 1

14 cos(7x) + C
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(h) (5 points) ∫
x√

1 + x2
dx

Solution: The radical
√

1 + x2 prompts us to use the substitution x = tan(θ). Moreover, dx =
sec2(θ)dθ. It follows that∫

x√
1 + x2

dx =

∫
tan(θ)

sec(θ)
sec2(θ)dθ =

∫
tan(θ) sec(θ) = sec(θ)

Since tan(θ) = x, we have that cos(θ) = 1√
1+x2

. Hence sec(θ) =
√

1 + x2.

Final Answer

√
1 + x2 + C
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Part 1: Long Answers (50 marks)

Show your work for full marks

2. (15 points) ∫
x4 + 9x2 + x+ 2

x2 + 9
dx

Solution: We note that the numerator has higher degree than the denominator. So we perform long
division first.

x2

x2 + 9 ) x4 + 9x2 + x+ 2
x4 + 9x2

x+ 2

Hence, we obtain
x4 + 9x2 + x+ 2

x2 + 9
= x2 +

x+ 2

x2 + 9
.

We find first that ∫
x2 dx =

1

3
x3.

Likewise, splitting the numerator, we see that∫
x+ 2

x2 + 9
dx =

∫
x

x2 + 9
dx+

∫
2

x2 + 9
dx.

We use substitution u = x2. We get∫
x

x2 + 9
dx =

∫
1

2

1

u+ 9
du =

1

2
ln(u+ 9) =

1

2
ln(x2 + 9)

Using
∫

1
1+x2 dx = arctan(x), we see that∫

2

x2 + 9
dx =

2

3
arctan(x/3).

Combining all the terms, we arrive at∫
x4 + 9x2 + x+ 2

x2 + 9
dx =

1

3
x3 +

1

2
ln(x2 + 9) +

2

3
arctan(x/3) + C.
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3. Compute the following integrals.

(a) (5 points) ∫
csc(x) dx

Solution: We multiply and divide by (csc(x) + cot(x)) to get∫
csc(x) dx =

∫
csc2(x) + csc cot(x)

csc(x) + cot(x)
dx

where we note that the numerator is the negative of the derivative of the denominator. Hence, we
perform the substitution u = csc(x) + cot(x) with du = −(csc2(x) + csc cot(x))dx. Our integral
becomes ∫

csc(x) dx =

∫
− 1

u
du = − ln(u) + C = − ln(csc(x) + cot(x)) + C

(b) (5 points) ∫
csc3(x) dx

Soluion: We observe that csc3(x) = csc2(x) csc(x), where we know how to integrate the first factor.
So, we use integration by parts with

u = csc(x) dv = csc2(x)dx
du = − cot(x) csc(x)dx v = − cot(x).

This gives us ∫
csc3(x) dx = − csc(x) cot(x)−

∫
cot2(x) csc(x)dx.

Now, we attempt to recover the original integral, with an opposite sign. To this end, we use the
identity 1 + cot2(x) = csc2(x). We get∫

csc3(x) dx = − csc(x) cot(x)−
∫

cot3(x)dx+

∫
csc(x)dx = − csc(x) cot(x)−ln(csc(x)+cot(x))−

∫
cot3(x)dx

It follows that, after solve for
∫

csc3(x) dx as an unknow in the above linear equation, we obtain∫
csc3(x) dx = −1

2
(csc(x) cot(x) + ln(csc(x) + cot(x)) + C

(c) (5 points) Use parts (a) and (b) to compute the following integral.∫
cot2(x) csc(x) dx

Solution: We recall from part (b), after integration by parts, that we have obtained∫
csc3(x) dx = − csc(x) cot(x)−

∫
cot2(x) csc(x)dx.

It follows that ∫
cot2(x) csc(x)dx = −

∫
csc3(x) dx− csc(x) cot(x).

Using the result from part (b) again, we obtain∫
cot2(x) csc(x)dx =

1

2
(csc(x) cot(x) + ln(csc(x) + cot(x))− csc(x) cot(x) + C
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4. (15 points) ∫
(x+ 1)2ex dx

Solution: We may write the integrand as x2ex + 2xex + ex. This prompts us to use reduction of power
(via integration by parts). The simplest term is∫

exdx = ex.

The next simple term is 2
∫
xexdx. We use

u = x dv = exdx
du = dx v = ex

to obtain

2

∫
xexdx = 2xex − 2

∫
exdx = 2xex − 2ex.

Likewise, for the term
∫
x2ex dx, we use

u = x2 dv = exdx
du = 2xdx v = ex

to get ∫
x2exdx = x2ex − 2

∫
xexdx = x2ex − 2xex + 2ex.

Combining all three terms, we get∫
(x+ 1)2ex dx = x2ex − 2xex + 2ex + 2xex − 2ex + ex = x2ex + ex
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5. (15 points) Find the volume of the solid given by the region enclosed by the curve

x2 + (y − 1)2 = 1

and rotated about the y-axis.

Solution: We note that the region describe is a circle with center at (0, 1) and radius 1. Hence, after
rotating about the y-axis, we obtain a ball of radius 1. Standard formula from high school tells us its
volume is 4

3π. However, we can compute this using an integral. Namely, we use the disc method. We

note that x =
√

1− (y − 1)2 for y = 0 to y = 2. Hence the volume is given by

π

∫ 2

0

1− (y − 1)2dy = π (y − 1

3
(y − 1)3)

∣∣∣∣2
0

= π(2− 1

3
− 0− 1

3
) =

4

3
π
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