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1 How to Use These Notes

First let me state the two most important questions we want to answer in this
class

How to integrate a function f(x)
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The majority of the contents in this note is geared to answer this questions.
In these notes, I will explicitly indicate which are the important materials.

Although one should be comfortable with all the materials in this note, but
certain critical concept must be emphasized to illuminate the essence of the
course. First, definitions are in bold. I will use a scale of stars to measure the
importance of the material. The importance of the concept decreases as the
number of star decreases. Whenever you see a 5-star tag [? ? ? ? ?], this means
you must know this inside out. And [?] is just a bit more important than the
regular text you see in the notes. Finally, I will italicize item that 1) you need
to be careful with as they might be confusing, or 2) to leave a comment.

The corresponding section numbers in [Stewart] are listed in bracket in the
heading of each section. And I will NOT write the integration constant +C in
the notes to save some ink, but you should always write it!!

2 Introduction to the Integral

2.1 (5.1) Area and Distances

2.1.1 Area

A mathematical illustrative example of the integral is area under a curve. Let
f(x) be a non-negative continuous function. We will say the area under y =
f(x) from x = a to x = b to be the area bounded between the lines x = a,
x = b, the x-axis, and the graph of f(x).
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In this example, the shaded region represents the area under the curve y =
f(x) = x2 from x = −2 to x = 2. In general, to find the area under the curve
y = f(x) from x = a to x = b, we divide the interval [a, b] into segments

[x0, x1], [x1, x2], · · · , [xn−1, xn] (2.1.1)

of width ∆x. That is,

∆x = xi − xi−1 =
b− a
n

(2.1.2)

and xi = a+ i∆x for all i = 1, ..., n. On each interval, the funtion f(x) ≈ f(xi)
since the interval is very small so that f(x) is about constant. So that the area
under f(x) is approximately f(xi)∆x. Hence, we can then approximate the
area by

f(x1)∆x+ f(x2)∆x+ · · ·+ f(xn)∆x. (2.1.3)

In fact the choice of sample point does not matter. In fact, we can choose any
sample point x∗i in the interval [xi−1, xi] and compute the sum

f(x∗1)∆x+ f(x∗2)∆x+ · · ·+ f(x∗n)∆x. (2.1.4)

As we choose the interval [xi−1, xi] to be small, equivalently ∆x to be smaller.
As we choose the the width ∆x to smaller by taking the number of segments
n→∞, the area under f(x) from x = a to x = b is

A = lim
n→∞

f(x∗1)∆x+ f(x∗2)∆x+ · · ·+ f(x∗n)∆x. (2.1.5)

2.1.2 Displacement/Distance

A physically motivating example for the integral is the displacement traveled
by a car with velocity f(t) at time t. Suppose that from time t = a to t = b a
car travels at a velocity f(t). If f(t) = v is a constant. Then the displacement
traveled in ∆t units of time is simply

d = v∆t = f(t)∆t. (2.1.6)

Now suppose that f(t) is variable. If it is continuous, then its value varies
slightly if t changes by a small amount. Hence we may approximate the distance
traveled by dividing the time interval [a, b] into small segments

[t0, t1], [t1, t2], · · · , [tn−1, tn] (2.1.7)

of width ∆t = b−a
n . On each time segment [ti−1, ti], the car travels approxi-

mately

f(t∗i )∆t (2.1.8)
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units of length, where t∗i is any sample point in the interval [ti−1, ii]. The total
displacement, d, is, therefore, approximately,

d ≈ f(t∗1)∆t+ f(t∗2)∆ + · · ·+ f(t∗n)∆t. (2.1.9)

Taking the segments [ti−1, ti] smaller for better approximation, we see that

d = lim
n→∞

f(t∗1)∆t+ f(t∗2)∆ + · · ·+ f(t∗n)∆t. (2.1.10)

2.1.3 Sigma Notation

We will henceforth denote use the sigma notation

n∑
i=1

ai = a1 + a2 + · · ·+ an. (2.1.11)

Then the area under the curve f(x) from x = a to x = b is

A = lim
n→∞

n∑
i=1

f(x∗i )∆x [? ? ?] (2.1.12)

and the displacement traveled in the time interval [a, b] by a car of velocity f(t)
is

d = lim
n→∞

n∑
i=1

f(t∗i )∆t [? ? ?] (2.1.13)

2.2 (5.2) The Definite Integral

2.2.1 Definition of the Definite Integral

Let f(x) be a function defined on [a, b]. We partition [a, b] in to n intervals of
equal width ∆x = b−a

n :

[x0, x1], [x1, x2], · · · , [xn−1, xn] (2.2.1)

where a = x0 and b = xn. We define the integral of f(x) from a to b to be∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(x∗i )∆x (2.2.2)

provided this limit exists and is independent of the choice of sample points x∗i .
If the limist exists, we say that f is integrable.

The following names are given to the parts of the integral∫ b

a︸︷︷︸
integral sign

f(x)︸︷︷︸
integrand

dx︸︷︷︸
integrate with respect to x

(2.2.3)
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We remark that the symbol dx only indicate that we are integrating with respect
to x, should there be any more variables appearing in the integrand.

The sum

n∑
i=1

f(x∗i )∆x (2.2.4)

is called a Riemann sum.

2.2.2 Properties of the Sigma Sum

The following list contains properties of the sigma sum. The first three properies
are the most important. The rest are useful when we compute integrals explicitly
from its definition. (The first three are important. Do not memorize the last
4 properties, they can be readily searched on Google and will be provided in a
formula sheet for any tests if a question demands it)

1.
∑n
i=1 cai = c

∑n
i=1 ai.

2.
∑n
i=1(ai + bi) =

∑n
i=1 ai +

∑n
i=1 bi.

3. If ai ≤ bi for all i, then
∑n
i=1 ai ≤

∑n
i=1 bi.

4.
∑n
i=1 1 = n.

5.
∑n
i=1 i = n(n+1)

2

6.
∑n
i=1 i

2 = n(n+1)(2n+1)
6

7.
∑n
i=1 i

3 =
(
n(n+1)

2

)2
2.2.3 Properties of the Integral

The first three properties of the sigma sum translates, through the Riemann
sum, into properties for the integral. The last two properties listed below does
not come from a property listed in the previous subsection.

1. [? ? ?]
∫ b
a
cf(x)dx = c

∫ b
a
f(x)dx (linearity)

2. [? ? ?]
∫ b
a
f(x) + g(x)dx =

∫ b
a
f(x) +

∫ b
a
g(x)dx (linearity)

3.
∫ b
a

1 dx = b− a

4. If f(x) ≤ g(x), then
∫ b
a
f(x)dx ≤

∫ b
a
g(x)

5. [??] If a ≤ b ≤ c, then
∫ c
a
f(x)dx =

∫ b
a
f(x)dx+

∫ c
b
f(x)dx.

6. [??]
∫ b
a
f(x)dx = −

∫ a
b
f(x)dx.
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2.3 (4.9) Antiderivatives

First, I want to dispel any possible confusion in notation. For our purpose, a
real function is a map from an interval I to the real line. I will use both f and
f(x) to mean such a function. However, confusion may arise when we want to
talk about a function evaluated at a point x = x0. In this case the symbol f(x0)
would mean the function f evaluated at the point x = x0. In the former case,
the argument x in f(x) is generic, while in the latter case the point x0 is given
and fixed. In what follows, I will use f to denote a function. But the meaning
of f(x), either as a function or as the evaluation of f at the point x, depends
on the context. If needed, I will specify its meaning.

Given any function f(x) on [a, b], an antiderivatives is any function F (x)
on [a, b] such that

F ′(x) = f(x). (2.3.1)

If F (x) is an antiderivative of f(x), so is F (x)+C for any constant C and these
are all the possible antiderivatives for f(x). For notation, we will use both

d

dx
F (x), F ′(x) (2.3.2)

to mean the derivative of F (x).
We remark that the symbol d

dxF (x) may have ambiguous meaning. It could

mean 1) d
dx (F (x)) – the derivative, with respect to x, of F (x) or 2)

(
d
dxF

)
(x) –

the evaluation of the derivative of F at x. However, with either interpretation,
d
dx (F (x)) =

(
d
dxF

)
(x). So there is in fact no ambiguity. To clarify notation

even more, the symbol (
d

dx
F (x)

)
(a) = F ′(a) (2.3.3)

means the derivative, with respect to x, of F (or equivalently, the function F (x))
evaluated at the point x = a. However,(

d

dx
F (a)

)
(x) = 0 (2.3.4)

In conclusion, the order or taking derivative of a function and evaluating the
function at a point matters!

In Figure 1, I have listed for your a table of important derivatives. The left
column you should know off by heart [? ? ?].

2.4 (5.3) Fundamental Theorem of Calculus (FTC)

Theorem 2.4.1 (FTC1 [?????]). Assume that f is continuous on the interval
[a, b], then the function

F (x) =

∫ x

a

f(t)dt, a ≤ x ≤ b (2.4.1)
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Figure 1: Table of Antiderivatives [Stewart]

is differentiable on (a, b) and F ′(x) = f(x). In another word, F (x) is an an-
tiderivative of f(x).

Theorem 2.4.2 (FTC2 [?????]). Assume that f is continuous on the interval
[a, b]. Let F (x) be an antiderivative of f(x). Then∫ b

a

f(t)dt = F (b)− F (a). (2.4.2)

The way the theorem are written may not be best suited for our purpose.
What you should remember, for the purpose of this course and computing in-
tegrals, is the following formuli [? ? ? ? ?]

d

dx

∫ x

a

f(t)dt = f(x),

∫ b

a

F ′(t)dt = F (b)− F (a) . (2.4.3)

What you should remember is that integrals and derivatives are almost inverses
of each other! We make a final note that the equation on the right in the box
is also called the net change theorem.

2.5 (5.4) Indefinite Integrals

The indefinite integral of f is an (hence any) antiderivative of f . (For mo-
tivation of why we can’t just call it the antiderivative and make extra names,
review FTC ). It is ∫

f(x)dx = F (x) + C (2.5.1)
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where F ′(x) = f(x). Don’t forget your constant C! We also remark that the

definite integral
∫ b
a
f(x)dx is a number while the indefinite integral

∫
f(x)dx is

a function.
Figure 2 is table of indefinite integrals. You are expected to know all the

materials here, especially the first ten identities (all left column and the first
one from the right column).

Figure 2: Table of Indefinite Integrals [Stewart]
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3 Techniques of Integration

Always remember:

[? ? ? ? ?] The general philosophy is that techniques should give you a tool to
convert unknown integrand to known integrands.

As the sentence implies, this philosophy consists two parts

1. Have a good reservoir of known integrals, and

2. Be fluent with integration techniques.

The first item is something you accumulate by experience. As a starting point
you should memorize all the integrals in Figure 2. For the second item, we
summarize all major techniques for computing integrals explicitly. Standard
techniques we include in this sections include

1. Linearity

2. Substitution Rule,

3. Integration by Parts,

4. Trigonometric Substitution, and

5. Partial Fraction.

The last two subsections are strategy for integration and (possibly non-standard
but useful) special techniques.

3.1 (5.2) Linearity [? ? ? ? ?]

Here are the most useful formula for integration. If I could I will put 6 stars,
but that’d be against my own principle.∫

f(x) + g(x)dx =

∫
f(x)dx+

∫
g(x)dx (3.1.1)

∫
cf(x)dx = c

∫
f(x)dx (3.1.2)

where c is a constant.
Here is an example. Integrate

∫
(1 + x2)2 + 9ex + π

xdx. We see that by
linearity∫

(1 + x2)2 + 9ex +
π

x
dx =

∫
(1 + x2)2dx+ 9

∫
exdx+ π

∫
1

x
dx. (3.1.3)
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Now we integrate term by term.∫
(1 + x2)2dx =

∫
1 + 2x2 + x4dx =

∫
1dx+ 2

∫
x2dx+

∫
x4dx (3.1.4)

= x+
2

3
x3 +

1

5
x5, (3.1.5)

and
∫
exdx = ex, and

∫
1
xdx = lnx.

3.2 (5.5) The Substitution Rule

The substitution rules are given in the following theorem.

Theorem 3.2.1 ((Substitution Rule)). Suppose that u = g(x) is differentiable
and its range is in the interval I and f is continuous on I, then∫

f(g(x))g′(x)dx =

∫
f(u)du (3.2.1)

Moreover, if g′ is continuous on [a, b], then∫ b

a

f(g(x))g′(x)dx =

∫ g(b)

g(a)

f(u)du. (3.2.2)

Just like the FTC, as stated, the rules are not as helpful as they are in
practice. In practice, the most important part of this technique is to identify the
substitution u = g(x). Below I included a (non-exhaustive) list of representative
samples of techniques.

Identify g(x). [? ? ? ? ?] This techniques is simple to explain and very
hard to use in practice: try to find f and g such that the integrand looks like∫
f(g(x))g′(x)dx where you know how to integrate f (with antiderivative F ).

Then we do the following steps.

1. Write the substitution u = g(x). The integral
∫
f(g(x))g′(x)dx becomes∫

f(u)g′(x)dx. (3.2.3)

2. We must change dx to du. To do this, we use the following intuitive
identity,

du =
du

dx
dx =

(
d

dx
g(x)

)
dx = g′(x)dx . (3.2.4)

This tells us ∫
f(g(x))g′(x)dx =

∫
f(u)du (3.2.5)
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Scaling. [? ? ? ? ?] Here is the idea:

1. Regard the integrand as f(ax) for some constant a such that you know
an antiderivative of f , say F .

2. Use the substitution u = ax with du = adx. Then∫
f(ax)dx =

∫
f(u)

1

a
du =

1

a
F (u) =

1

a
F (ax). (3.2.6)

Compute the integral
∫

3 cos(9x)dx.

1. Use the substitution is u = 9x.

2. Compute the differential

du =

(
d

dx
(9x)

)
dx = 9dx. (3.2.7)

Equivalently,

dx =
1

9
du. (3.2.8)

3. Put everything back into the integral. We get∫
3 cos(9x)dx = 3

∫
cos(9x)dx (by linearity) (3.2.9)

= 3

∫
cos(u)

1

9
du (by substitution). (3.2.10)

Now one can integrate this easily.

Translation. [? ? ? ? ?] Here is the idea:

1. Regard the integrand as f(x+ a) for some constant a such that you know
an antiderivative of f , say F .

2. Use the substitution u = x+ a with du = dx. Then∫
f(x+ a)dx =

∫
f(u)du = F (u) = F (x+ a). (3.2.11)

Compute the integral
∫

1
1+xdx.

1. We know that (ln(x))′ = 1
x . So, use the substitution is u = x+ 1.

2. Then we see that du = dx and∫
1

1 + x
dx =

∫
1

u
du = lnu = ln(1 + x) (3.2.12)
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Substitute for the Bad Part. [? ? ?] Here is the idea:

1. Suppose that we can write the integrand as f1(g(x))f2(x) where f1(g(x))
is hard to integrate explicitly or very ugly, but f1(x) and f2(x) are simple
and nice.

2. Use the substitution u = g(x).

3. Then we get du = g′(x)dx So that∫
f1(g(x))f2(x)dx =

∫
f1(u)

f2(x)

g′(x)
du (3.2.13)

4. If f2(x)
g′(x) is a function of g(x), then we are in business.

Compute
∫
x3
√
x2 + 1dx.

1. The square root here is causing headache here. But f1(x) =
√
x is nice.

2. So we set u = x2 + 1.

3. We get g′(x) = 2x and du = 2xdx. And we get∫
x3
√
x2 + 1dx =

∫
x3
√
udx (3.2.14)

=
1

2

∫
x2
√
udu (3.2.15)

=
1

2

∫
(u− 1)

√
udu (3.2.16)

=
1

2

∫
u3/2 − u1/2du (3.2.17)

Adding Zero [? ? ?] The philosophy of this technique is as follows

1. Very often it is easier to identify the integrand as f(g(x)) than f(g(x))g′(x).
So, we regard the integrand as f(g(x)) for some f and g such that you
know an antiderivative, F , of f .

2. Add and subtract f(g(x))g′(x) from f(g(x)) to get∫
f(g(x))dx =

∫
f(g(x))(1− g′(x))dx+

∫
f(g(x))g′(x)dx (3.2.18)

=

∫
f(g(x))(1− g′(x))dx+

∫
f(u)du (3.2.19)

=

∫
f(g(x))(1− g′(x))dx+ F (u) (3.2.20)

where u = g(x).
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3. We hope that the term f(g(x))(1−g′(x)) is less complicated than f(g(x))
and can be integrated.

We illustrate this with and example. Compute the example
∫

1
1+ex dx.

1. We regard 1
1+ex = f(ex) where f(x) = 1

1+x . We know that f has an-
tiderivative ln(1 + x). We set u = ex.

2. Subtract and add ex · 1
1+ex to get∫

1

1 + ex
dx =

∫
1 + ex

1 + ex
dx−

∫
ex

1 + ex
dx (3.2.21)

=

∫
1 dx−

∫
ex

1 + ex
dx (3.2.22)

= x−
∫

u

1 + u

1

u
du (3.2.23)

= x+

∫
1

1 + u
du (3.2.24)

Multiplying by One. [??] The philosophy of this technique is as follows

1. Regard the integrand as f1(x)
f2(x)

.

2. Try to multiply a function h(x) in the numerator and in the denominator
such that

d

dx
(f2(x)h(x)) = f1(x)h(x) (3.2.25)

3. use the substitution u = f2(x)h(x), then du = d
dx (f2(x)h(x))dx = f1(x)h(x)dx

so that∫
f1(x)

f2(x)
dx =

∫
f1(x)h(x)

f2(x)h(x)
dx =

∫
1

u
du = lnu = ln(f2(x)h(x)) (3.2.26)

Compute the example
∫

sec(x)dx.

1. The integrand is sec(x)
1 .

2. Look for h(x) such that (h(x) · 1)′ = h(x) sec(x). To do this, first, we look
for functions such that when you differentiate, you pick up a factor of sec.
We observe that (tan(x))′ = sec2(x) works. But certainly (tan(x))′ =
sec2(x) 6= tan(x) sec(x). But luckily, tan(x) sec(x) = (sec(x))′. So we
simply add them and note that

(tan(x) + sec(x))′ = sec2(x) + tan(x) sec(x) = sec(x)(tan(x) + sec(x))
(3.2.27)
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So we use the substitution u = tan(x) + sec(x) and conclude that∫
sec(x)dx = ln(tan(x) + sec(x)) (3.2.28)

by equation (3.2.26).

Implicit Function [??] Here is the idea

1. Suppose that the integrand can be written as f(x)g(x)

2. Assume that g(x) has a (simple) antiderivative G(x) and there is a func-
tion h such that h(G(x)) = f(x) and h is easy to integrate. Very often
h(x) = f(G−1(x)) if the function G(x) has an inverse. This condition is
guaranteed if g(x) > 0 for all x or g(x) < 0 for all x.

3. Use the substitution u = G(x). We see that du = G′(x)dx = g(x)dx and∫
f(x)g(x)dx =

∫
f(x)G′(x)dx =

∫
h(G(x))G′(x)dx =

∫
h(u)du

(3.2.29)

We compute
∫

1
2(x+3)

√
x+2

dx.

1. We have the integrand is the product of 1
x+3 and 1

2
√
x+2

.

2. We can integrate either one. But we don’t want to be left with an ugly
square root in the denominator at the end. So we pick g(x) = 1√

x+2
. Note

that g(x) > 0 for all x in the proper domain so its antiderivative has an
inverse. We see that an antiderivative of g is G(x) =

√
x+ 2.

3. So we substitute u =
√
x+ 2 and we see that x = u2−2 and du = 1

2
√
x+2

dx

and∫
1

2(x+ 3)
√
x+ 2

dx =

∫
1

(u2 − 2 + 3)
du =

∫
1

u2 + 1
du = tan−1(u)

(3.2.30)

Repeated use of the Substitution Rule. [? ? ??] Sometimes it is nec-
essary to use the substitution rule several times to convert the integrand into
some simple function which you can integrate explicitly!

3.3 (7.1) Integration by Parts

The integration by part formula is∫
f(x)g′(x)dx = f(x)g(x)−

∫
f ′(x)g(x)dx (3.3.1)

Here is the idea of the technique and some strategies.
Identify u and dv. [? ? ? ? ?]
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1. The integrand looks like a product of two function f(x)g′(x), one of them
g′(x) you know how to integrate and the other f(x) you know how to
differentiate.

2. You that if you can shift one derivative from g to f , then you can integrate∫
f ′(x)g(x)dx instead of

∫
f(x)g′(x)dx.

3. Then we use formula (3.3.1). In practice, we use the pattern

u = dv = (3.3.2)

du = v = (3.3.3)

Then the rule is written as∫
udv = uv −

∫
vdu. (3.3.4)

For example, integrate
∫
xex. Here we have

u = x dv = ex (3.3.5)

du =? v =? (3.3.6)

Then du = dx and we can compute v by computing
∫
exdx = ex. In the end we

get

u = x dv = ex (3.3.7)

du = dx v = ex. (3.3.8)

So, ∫
xex = xex −

∫
ex = xex − ex. (3.3.9)

Recognize the coefficient 1 [? ? ? ? ?]. Here is the main idea

1. Sometimes the integrand simply looks like a function f(x) which you can’t
factor. But hopefully xf ′(x) is nicer.

2. Write the integral
∫
f(x)dx =

∫
1 · f(x)dx.

3. Set u = f(x) and dv = 1 · dx and perform integration by part to get∫
f(x)dx = xf(x)−

∫
xf ′(x)dx (3.3.10)

Here is an example. Integrate
∫

tan−1(x)dx.

1. Set u = tan−1(x) and dv = 1dx. We get

u = tan−1(x) dv = dx (3.3.11)

du =
1

1 + x2
v = x. (3.3.12)
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2. The integral becomes∫
tan−1(x)dx = x tan−1(x)−

∫
x

1 + x2
dx (3.3.13)

The second term on the RHS can be integrated using the substitution
u = x2.

Reduction of Power: Polynomials [? ? ? ? ?] Here is the idea:

1. The integrand looks like xnf(x) for some f(x) that you know how to
integrate (as many times as possible). We want to reduce the power of xn

by as much as we can since we know how to integrate f(x) repeatedly.

2. Use u = xn and dv = f(x)dx.

3. We get

u = xn dv = f(x)dx (3.3.14)

du = nxn−1 v = F (x) (3.3.15)

where F (x) is an antiderivative of f(x).

4. The integral becomes∫
xnf(x)dx = xnf(x)−

∫
nxn−1F (x)dx (3.3.16)

Here is an example:
∫
x5exdx.

1. We can integrate ex for as many times as we need.

2. Use u = x5 and dv = exdx.

3. We get

u = x5 dv = exdx (3.3.17)

du = 5x4 v = ex (3.3.18)

4. The integral becomes∫
x5exdx = x5ex − 5

∫
x4exdx. (3.3.19)

Using the same idea, one can repeat integration by part to integrate, by
getting rid of all powers of x.

Reduction of Power: General Setting [? ? ? ? ?] Here is the idea:

1. The integrand looks like (f(x))ng′(x). You can integrate g′(x) and you
want to reduce the power n.
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2. Use u = (f(x))n and dv = g′(x)dx.

Here is an example:
∫

(lnx)4dx.

1. It’s not so obvious how to choose factors. But we can write the integrand
as 1 · (lnx)4.

2. Use u = (lnx)4 and dv = dx.

3. We get

u = (lnx)5 dv = dx (3.3.20)

du = 5(lnx)4
1

x
v = xdx (3.3.21)

4. The integral becomes∫
(lnx)5dx = x(lnx)5 − 5

∫
(lnx)4dx (3.3.22)

and we repeat.

Recursive Integration This one is best illustrated by example. The main
idea is that integration by part does not make the integrand look simpler, how-
ever after some iterations of integration by parts, you get back to where you
started, but with a different coefficient!

Compute
∫
ex cos(x)dx. We use

u = cos(x) dv = exdx (3.3.23)

du = − sin(x)dx v = ex (3.3.24)

to get ∫
ex cos(x)dx = cos(x)ex +

∫
sin(x)exdx. (3.3.25)

This is truly usely, as the integrand does not become any simpler. But let’s not
give up. We do integration by parts again. This time we use

u = sin(x) dv = exdx (3.3.26)

du = cos(x)dx v = ex (3.3.27)

to get ∫
ex cos(x)dx = cos(x)ex +

∫
sin(x)exdx (3.3.28)

= cos(x)ex + sin(x)ex −
∫

cos(x)ex. (3.3.29)

We note that we get
∫

cos(x)ex back as we started. You might say this is utterly
useless. But note that the sign of

∫
cos(x)ex on the RHS is negative. So we may

solve for it and move it to the LHS to get

2

∫
ex cos(x)dx = cos(x)ex + sin(x)ex. (3.3.30)

17



3.4 (7.1) Trig Integrals

In order for us to compute trig integrals. We need 2 things

1. Integral of simple trig functions. You need to memorize all the integrals
from Fig. 2.

2. Basic trig identities. I listed them in Fig. 3. You need to know [? ? ?]:
1) Pythagorean identities, 2) double angle, 3) half angle, and 4) product
formuli. It is useful to know the addition and subtraction formuli.

Figure 3: Trig Identities, source: Google Image

Trig integrals that we concern ourselves with are of the follow three forms:
Product of sinn(x) and cosm(x) We give a summary of the strategy for

computing this kind of integrals in Fig. 4.
Product of tann and secm. We give a summary of the strategy for com-

puting this kind of integrals in Fig. 5.
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Product of sin(ax) and cos(bx). We give a summary of the strategy for
computing this kind of integrals in Fig. 6.

4 Trig Substitution

5 Other Techniques

I + J and I − J try
√

tan(x).
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Figure 4: Product of sinn(x) and cosm(x), [Stewart]
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Figure 5: Product of tanm(x) and secm(x), [Stewart]

Figure 6: Product of sin(ax) and cos(bx), [Stewart]
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