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Part 1: Short Answers (40 marks)

No justification is necessary and no mark will be awarded for them

1. For each of the following questions, write your final answer in the box on the right hand side. Only your
final answer will be graded.

(a) (5 points) True of False? Let {an}∞n=1 and {bn}∞n=1 are two sequences of real numbers. If
∑∞
n=1 an

is divergent and
∑∞
n=1 bn is convergent, then

∑∞
n=1 an + bn convergent.

Solution: The Series
∑∞
n=1 1 is clearly divergent while

∑∞
n=1 0 is convergent. But

∑∞
n=1 1 + 0 is

divergent.

Final Answer

False

(b) (5 points) True or False? Suppose that we have a sequence real numbers a1, a2, a3, ... such that
an < 1/n2 if n ≥ 1000. Then

∑∞
n=1 is convergent.

Solution: The first 999 terms adds to a finite number, i.e. a1 + a2 + · · · + a999 is a finite number.
The rest a1000 + a1001 + · · · ≤ 1/10002 + 1/10012 + · · · <∞ by the p-test (in this case p = 2 > 1).

Final Answer

True

(c) (5 points) Assume that
∑∞
n=1 an = 2. Compute

∑∞
n=1

(−1)n+1

n − an

Solution: First, we need to compute
∑∞
n=1

(−1)n+1

n . We recall that

ln(1 + x) =

∞∑
n=1

(−1)n+1xn

n
.

Since the series is convergent at x = 1 (by the alternating series test), we conclude that

∞∑
n=1

(−1)n+1

n
= ln(1 + 1) = ln(2).

So we have
∞∑
n=1

(−1)n+1

n
− an = ln(2)− 2

Final Answer

ln(2)− 2
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(d) (5 points) Let
f(x) := e−x

What is the 100-th Taylor coefficient of the Taylor Series of f(x) centered at x = 0?

Solution: We know that

e−x =

∞∑
n=0

(−x)n

n!

So the 100-th Taylor coefficient is (−1)100/100! = 1/100!.

Final Answer

1

100!

All of the following series are convergent, compute the value of each series explicitly.

(e) (5 points)
∞∑
n=1

2
cos(π + nπ)

9n

Solution: we first note that cos(πn+ π) = (−1)n+1 and 1
1−x =

∑∞
n=0 x

n. Hence

∞∑
n=0

2
cos(π + nπ)

9n
= 2(−1)

∞∑
n=0

(
−1

9

)n
=

−2

1 + 1/9
= −18

11

Final Answer

−18
11
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(f) (5 points)
∞∑
n=1

1

n2 + 5n+ 6

Solution: We note that n2 + 5n+ 6 = (n+ 2)(n+ 3) factors. We use partial fraction method. We
look for A,B such that

1

(n+ 2)(n+ 3)
=

A

n+ 2
− B

n+ 3

Multiply the equation by (n+ 2)(n+ 3) on both sides, we arrive at

1 = A(n+ 3)−B(n+ 2) = (A−B)n+ (3A− 2B).

This tells us that A = B and 3A− 2B = 1. It follows that A = B = 1. Hence, we get

∞∑
n=1

1

n2 + 5n+ 6
=

∞∑
n=1

1

n+ 2
− 1

n+ 3

is a telescoping series. Moreover, the N -th partial sum is

N∑
n=1

1

n+ 2
− 1

n+ 3
=

1

3
− 1

N + 3

Hence,
∞∑
n=1

1

n+ 2
− 1

n+ 3
= lim
N→∞

1

3
− 1

N + 3
=

1

3

Final Answer

1
3
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(g) (5 points)
∞∑
n=0

(−1)nπn

(2n+ 2)!

Solution: We recognize that

cos(x) =

∞∑
n=0

(−1)n
x2n

(2n)!
.

We re-write

∞∑
n=0

(−1)nπn

(2n+ 2)!
=

∞∑
n=0

(−1)n(
√
π)2n

(2n+ 2)!
=

1

π

∞∑
n=0

(−1)n(
√
π)2n+2

(2n+ 2)!
=
−1

π

∞∑
n=1

(−1)n(
√
π)2n

(2n)!

Writing out the power series for cos(x) explicitly for the 0-th term, we see that

cos(
√
π) = 1 +

∞∑
n=1

(−1)n(
√
π)2n

(2n)!
.

It follows that
∞∑
n=0

(−1)nπn

(2n+ 2)!
=
−1

π
(cos(

√
π)− 1)

Final Answer

−1
π (cos(

√
π)− 1)

(h) (5 points)
∞∑
n=0

ln[sec2(n)− tan2(n)]

Solution: We note that sec2(n)− tan2(n) = 1 and ln(1) = 0. So every term of the series is 0.

Final Answer

0
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Part 1: Long Answers (60 marks)

Show your work for full marks

2. Determine if the following series are absolutely convergent, conditionally convergent, or divergent.

(a) (5 points)
∞∑
n=2

nn(−1)n

n!(n+ 1)

Solution: The principle of dominance shows that n2 >> n! >> (n+ 1). So we expect the series to
diverge. The only part that might make the series converge is the oscillating (−1)n. But it turns
out this oscillating term does not help us to get a convergent series.

To prove our guess, we employ the divergence test. We consider

lim
n→∞

nn(−1)n

n!(n+ 1)
.

If n is even and n is large, we see that

nn(−1)n

n!(n+ 1)
=

nn

n!(n+ 1)
=

n · n · n · · ·n
n(n− 1)(n− 2) · · · (1)(n+ 1)

=
n

n
· n

n− 1
· n

n− 2
· · · n

2
· 1

n+ 1
≥ 1

where there are exactly n-factors on the top and n + 1 factors on the bottom after the second
equality. Likewise, if n is odd, then

nn(−1)n

n!(n+ 1)
≤ −1.

This shows that the limit limn→∞
nn(−1)n
n!(n+1) does not exits. Hence the series is divergent.
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(b) (10 points)
∞∑
n=3

(−1)n

10 ln(n)− 1/2n

Solution: Do not let the 1/2n mislead you. The 2n is on the bottom and so 1/2n is small for n large.

In particular 10 ln(n) dominates 1/2n. So the series behaves roughly like
∑∞
n=3

(−1)n
10 ln(n) , which we

know is conditionally convergent. We consider absolute convergence first. Taking absolute value,
we obtain

∞∑
n=3

1

ln(n)− 1/2n
.

We note that
1

10 ln(n)− 1/2n
≥ 1

10 ln(n)
.

Since
∑∞
n=3

1
10 ln(n) diverges, the comparison test shows that the series is not absolutely convergent.

Now we consider conditional convergence. We note that the term 1
10 ln(n)−1/2n is decreasing. So the

alternating series test and the fact that

lim
n→∞

1

10 ln(n)− 1/2n
= 0

show that the series is conditionally convergent.
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3. (15 points) For each integer k > 0, find the radius of convergence of

∞∑
n=0

(n!)k

(kn)!
xn

Solution: We apply the ratio test. We see that

lim
n→∞

((n+ 1)!)k

(kn+ k)!
|x|n+1 (kn)!

(n!)k|x|n
= lim
n→∞

(n+ 1)k

(kn+ k)(kn+ k − 1) · · · (kn+ 1)
|x| = |x|

kk

The series converges if |x|/kk < 1 and diverges if > 1. Equivalently, the radius of convergence is kk.

The difficulty is in the computation of the limit. We note that we can write

(n+ 1)k

(kn+ k)(kn+ k − 1) · · · (kn+ 1)
=

n+ 1

kn+ k
· n+ 1

kn+ k − 1
· n+ 1

kn+ k − 2
· · · n+ 1

kn+ 1

where there are k-factors above. Each factor admits a limit, as n → ∞ of 1/k (Note we are taking the
limit as n→∞, but k is fixed. If it makes it easier, pretend k = 5 and work out the details first). Hence,
together, they contribute 1/kk.
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4. (a) (5 points) Find a closed form of
∞∑
n=0

xn

n

Solution: We recall that
1

1− x
=

∞∑
n=0

xn.

Integrating term-by-term we get

− ln(1− x) =

∞∑
n=0

xn+1

n+ 1
=

∞∑
n=1

xn

n
.

(b) (5 points) Let f(x) = ln(1 − x)/x if x > 0 and f(0) = 1 if x = 0. Show that f is continuous on
[0, 1)

Solution: Since ln(1−x) is continuous on [0, 1], we only need to show that the function is continuous
at x = 0. We note that, by L’Hopital’s rule

lim
x→0

ln(1− x)/x = lim
x→0

−1/(1− x)

1
= 1 = f(0).

This shows that f(x) is continuous on [0, 1)
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(c) (5 points) Assume that
∫ 1

0
ln(1−x)

x = −π2/6. Use parts (a) and (b) to compute

∞∑
n=1

1

n2

Solution: By part (a), we see that

− ln(1− x)

x
=

∞∑
n=1

xn−1

n
.

By (b) shows that this function is integrable and

π2

6
=

∫ 1

0

− ln(1− x)

x
dx =

∞∑
n=1

∫ 1

0

xn−1

n
dx =

∞∑
n=1

1

n2
.
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5. (a) (8 points) Suppose that a sequence of real numbers, {an}∞n=0, satisfies

an+1 = − an
(n+ 1)

with a0 = 1. Find a closed form formula for an in terms of n only. (Use the notation n! =
n(n− 1)(n− 2) · · · (2)(1) and define 0! = 1)

Solution: Using the relation an+1 = − an
(n+1) , we see that

an =
(−1)an−1

n
=

(−1)2an−2
n− 1

=
(−1)3an−3
n− 2

= · · · = (−1)na0
n!

=
(−1)n

n!

(b) (7 points) Solve the differential equation

f ′ = −f and f(0) = 1

by writing f as a series representation
∑∞
n=0 anx

n. Then determine the radius of convergence of
this series.

Solution: Write f(x) =
∑∞
n=0 anx

n. Then

f ′(x) =

∞∑
n=1

nanx
n−1 =

∞∑
n=0

(n+ 1)an+1x
n

Since f ′ = −f , we must have, after matching coefficients of xn,

(n+ 1)an+1 = −an.

and a0 = 1. We find from part (a) that

f(x) =

∞∑
n=0

(−x)n

n!
= e−x.

Hence the radius of convergence is ∞.
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