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Abstract. We consider the dynamics of small closed submanifolds (‘bub-

bles’) under the volume preserving mean curvature flow. We construct a map

from (n+1)-dimensional Euclidean space into a given (n+1)-dimensional Rie-
mannian manifold which characterizes the existence, stability and dynamics

of constant mean curvature submanifolds. This is done in terms of a reduced

area function on the Euclidean space, which is given constructively and can
be computed perturbatively. This allows us to derive adiabatic and effective

dynamics of the bubbles. The results can be mapped by rescaling to the

dynamics of fixed size bubbles in almost Euclidean Riemannian manifolds.
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1. Background and main results

The goal of this note is to introduce the Lyapunov-Schmidt map extending the
Feshbach-Schur one ([8], see also [7, 19])1 to a nonlinear setting and to use it to
derive the adiabatic (and effective) dynamics of submanifolds under the volume
preserving mean curvature flow.

Let (M, g) be an n + 1-dim oriented Riemannian manifold. Recall that a family
of immersions ψ(t, ·) : Σ → M , ψ(t,Σ) := St, t ≥ 0, of compact, connected,
orientable manifolds2 is called the volume preserving mean curvature flow (VPF),
iff it satisfies the equation

∂tψ
N = H̄(ψ)−H(ψ),(1.1)

Date: April 8, 2018.
1The Feshbach-Schur map was introduced in the context of quantum electrodynamics and

was used in statistical mechanics and random Schrödinger operators in [25] and [10], respectively
(see also [14, 15]).

2We choose their orientation to be compatible with that of M .
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Figure 13. Interfacial curvature, H , distributions for the C, G, PL and D microstructures. The
green patches on the schematic diagrams to the left indicate elementary interfacial units. The
detailed shapes of these units are then displayed on the right by means of a SCFT calculation along
the L/C phase boundary at χN = 20 and f = 0.3378. The curvature distribution over each unit
is specified by the colour scale with the average and standard deviation quoted to the far right.
Adapted from [69].

calculations [69] show that minority-type homopolymer reduces the packing frustration in D
relative to G, whereas majority-type homopolymer does not. With PL, the converse is true. In
fact, calculations [37,73] predict that sufficient minority homopolymer can stabilise D over G,
and that adequate majority homopolymer causes PL to replace G.

The presence of the close-packed spherical (Scp) phase in figure 2(a) seems to contradict
the idea that packing frustration favours the bcc arrangement. The explanation is that, at
high asymmetries, a significant fraction of minority blocks are dislodged from their domains

where ∂tψ
N is the normal component of the velocity vector ∂tψ, defined as ∂tψ

N =
g
(
∂tψ, ν(ψ)

)
, with ν(ψ), the outward unit normal to St, is the normal component

of the velocity vector ∂tψ Here H(ψ) is the mean curvature of St and H̄ = H̄(t)
its mean value over St,

H̄ :=

∫
St
Hdσ∫

St
dσ

.(1.2)

The VPF appeared in material sciences almost a century ago in modeling cell,
grain and bubble growth, etc. It has been derived – as the sharp interface limit
(non-rigorously) – from the Kawasaki dynamics in the Ising or Potts model, or
from the phase field models of the Cahn-Hilliard type (see e.g. [11, 12]), which
themselves can be considered as a (formal) hydrodynamic limit of a microscopic
dynamics, say, the stochastic Ginzburg-Landau model (see Spohn [26]).

The static solutions to (1.1) are exactly the constant mean curvature immersions

H = H̄ ≡ h.(1.3)

They appear in nature as (almost) stationary interfaces, e.g. in block copolymer
melts ([23], see Fig. 1). (Because of close packing, surfaces deviate from CMC
surfaces.)

As a consequence of (1.1), the enclosed volume of St is constant in time, while its
area is decreasing (see below).
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Let A(ψ) and Venc(ψ) denote the area and enclosed volume of a closed surface
given by an immersion ψ. In what follows we take Σ = Sn, the standard unit
n−dimensional sphere. Let

Xk
c := {ψ ∈ Hk(Sn,M) : Venc(ψ) = c}.(1.4)

Given c > 0 small and z ∈Mn+1, there exists a unique geodesic sphere, θλ,z ∈ Xk
c ,

of a radius λ = λ(c), centred at z (λ depends on z as well), having enclosed volume
c. The function λ = λ(c) is invertible. We denote its inverse by c(λ). The main
result of this note is the following

Theorem 1.1. For λ sufficiently small, there exists a family of maps Φλ : M →
Xk
c(λ), r > n/2 + 2, defined constructively in (2.16) below, such that

(i) For h large, there is an invertible function λ = λ(h), s.t. ψλ,z = Φλ(z), with
λ = λ(h), solves (1.3), iff z is a critical point of A(Φλ(z)) on {Venc(Φλ(z)) = c}.

(ii) Let z∗ be a critical point of A(Φλ(z)) on {Venc(Φλ(z)) = c}. Then the sur-
face ψλ,z∗ is a (non-degenerate) local minimum/(saddle or maximum) point of
the area functional A(ψ) on the set {Venc(ψ) = c} iff z∗ is a (non-degenerate)
local minimum/(saddle or local maximum) point of the function of A(Φλ(z)) on
{Venc(Φλ(z)) = c}.

(iii) With z∗ as above, the surface ψλ,z∗ is asymptotically stable, if z∗ is a strict
local minimum point of A(Φλ(z)) on {Venc(Φλ(z)) = c} and unstable if z∗ is a
saddle or local maximum point.

We prove this theorem in Section 2. It can also be essentially deduced using
the proofs and arguments in Alikakos and Freire ([1]). Its main value is a new
viewpoint.

The map Φλ is constructed using the well-known Lyapunov - Schmidt argument.
We call it the Lyapunov - Schmidt map.3 Abstractly and informally, it is defined
as follows. Let Y ⊂ X be two Hilbert spaces. Given an orthogonal projection P
on X and a point u ∈ Y , we say that a differentiable map G : Y → X is in the
domain of ΦPu iff the operator L̄ := P̄ dG(u)P̄ , where P̄ := 1 − P , is invertible
on Ran P̄ . For such a G, we define the new map ΦPu(G) : PY → PX as

ΦPu(G)(v) := PG(u+ v + w(v)),

where v ∈ PY and w ≡ w(v) is a solution to the equation P̄G(u+ v + w) = 0 in
w ∈ Ran P̄ Y . (The requirement that the operator L̄ is invertible on Ran P̄ and
elementary smoothness properties guarantee that the equation P̄G(u+v+w) = 0

3Like the Feshbach-Schur map, which comes from reconceptulazing of the well-known
Feshbach-Schur perturbation theory, the Lyapunov-Schmidt map comes from rethinking the

well-known Lyapunov-Schmidt reduction technique.
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has a unique solution in an appropriate space.) We call ΦPu the Lyapunov-
Schmidt map. One can compose such maps with varying P and u (possibly also
with rescaling) to obtain a discrete dynamical system - a renormalization group.

Coming to the notion of stability, we will work with the following definitions.
Recall (see Proposition 1.5 below) that the Gâteaux derivative dH of the mean
curvature H is the hessian A′′ of the area functional A.

Definition 1.2. Linear stability (or just stability in geometric analysis): We say
that a (critical) hypersurface ψ∗ ∈ Xk

c is (linearly) stable, if dH(ψ∗) = A′′(ψ∗) ≥ 0
on Tψ∗X

k
c . On the other hand, ψ∗ ∈ Xk

c will be called (linearly) unstable if
dH(ψ∗) = A′′(ψ∗) on Tψ∗X

k
c has a negative spectrum.

Asymptotic stability: A CMC hypersurface ψ∗ ∈ Xk
c is asymptotically stable, iff

there exists an ε > 0, such that for every initial hypersurface ψ0 ε−close to ψ∗ in
the Hk norm, k > n

2 +2, the solution converges (possibly after reparametrizations)
to ψ∗, as t→ +∞.

The theorem above, together with a refinement (due to [27, 24]) of beautiful results
of [18] (see also [28]) about the area and enclosed volume expansions for small
geodesic spheres, gives the following results due to Ye, Huisken and Yau, Alikakos
and Freire, Pacard and Xu ([27, 22, 1, 24], the existence part) and Alikakos and
Freire ([1], the stability part):

Theorem 1.3. For each non-degenerate critical point z∗ of the scalar curvature
R of Mn+1 and for each c > 0 sufficiently small:
(i) There exists a constant mean curvature hypersurface of enclosed volume c, en-
closing z∗.
(ii) Varying c, these CMC hypersurfaces foliate a neighborhood of z∗.
(iii) The hypersurfaces corresponding to non-degenerate maximum of R are asymp-
totically stable and those corresponding to saddle points and minima are unstable.

Let Snz := {ω ∈ TzM : gz(ω, ω) = 1}, the unit sphere in the tangent space TzM ,
Iz : Sn → Snz is an identification of Snz with Sn and expz(v) : Snz → M be the
exponential map. For ρ : Sn → R+, we define the map

θρ,z(ω) := expz(ρ(ω)Izω).(1.5)

LetHs ≡ Hs(Sn,R). Consider the VPF (1.1) with initial configuration ψ0 = θρ0,z0
close to the geodesic sphere, θλ∗,z∗ , for some z∗ ∈M and λ∗ > 0, small, in the sense
that ‖ρ0−λ∗‖Hk +dM (z0, z∗), k > n/2+1, is sufficiently small, see Subsection 2.1.
We compare the hypersurface ψ(t, ·) with the adiabatically evolving hypersurface
ψλ(t),z(t) := Φλ(t)(z(t)) for some z = z(t) and λ = λ(t) to be determined. Let
aλ(z) := A(Φλ(z)) and venc(z) := Venc(Φλ(z)) and

χc = {z ∈M : venc(z) = c}.(1.6)

Statement (iii) is derived from the following (cf. [1])
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Theorem 1.4. With the definitions above and for c (or λ) sufficiently small, we
have

ψ(t, ω) = θξ(t),ψλ(t),z(t)(ω)(ω),(1.7)

ż = −∇aλ(z) +O(λ2e−δt),(1.8)

λ̇ = O(λ2e−δt),(1.9)

where z ∈ χc, δ = n+2
2 −O(λ) and ξ(t) satisfies the estimates

‖ξ‖Hk . λe−δt.(1.10)

We call evolution (1.8) - (1.9) the adiabatic dynamics of almost CMC surfaces. Eq
(1.7) formulates the nonlinear perturbation theory (with ξ(t) being a perturbation
of ψλ(t),z(t)).

Foliations by CMC surfaces are of interest in general relativity (see e.g. [22]). For
material sciences, the opposite scaling regime is of interest. In it, the ambient
manifold is almost flat while the CMC surfaces are of size O(1).

In the Euclidean case, M = Rn+1, G. Huisken ([21]), in the general case, and
M. Gage ([17]), for curves, proved that the solution to (1.1) exists globally and
converges exponentially fast to a sphere, provided that the initial surface S0 is uni-
formly convex and smooth. Athanassenas [4, 5] has shown neckpinching of certain
class of rotationally symmetric surfaces under the volume preserving modification
of the mean curvature flow. Later Escher and Simonett and Antonopoulou, Karali
and Sigal ([16, 3]) proved the asymptotic stability of spheres (see also [20]). For
related works, see [2, 6] and the references therein.

Finally, we present some standard relations (see e.g. [13]) which are helpful in
understanding our results and which are used in the proofs.

Proposition 1.5. The Gateaux derivatives of the area and enclosed volume of
S ↪→M equal

dA(S)η =

∫
S

Hfdσ, dVenc(S)η =

∫
S

fdσ,(1.11)

where f := g(η, ν(S)).

Hence, from the variation formula (1.11) it follows that the tangent space to Xc

is

TψX
k
c = {ξ : Sn → TM,

∫
Sn
g(ξ, ν(ψ))dσ = 0}(1.12)

Proposition 1.6. (i) Minimizers of the area functional A(ψ) for a given enclosed
volume Venc(ψ) are critical points of A(ψ) on Xk

c .
(ii) The Euler-Lagrange equation for these critical points is exactly the CMC equa-
tion (1.3).



6 ILIAS CHENN, G. FOURNODAVLOS, I.M. SIGAL

(iii) These critical points are critical points of the modified functional

Ah(ψ) = A(ψ)− hVenc(ψ),(1.13)

where h is determined by c = Venc(ψ) and vice versa.
(iv) The VPF (1.1) is a gradient flow for the area functional on closed surfaces
with given enclosed volume.

Notation. In this paper we use the following notation:

• A . B denotes an inequality of the form A ≤ CB, where C > 0 is a
uniform in λ and z constant.

• ∂αz :=
∏n+1
i=1 ∂zi , where z = (z1, . . . , zn+1) ∈ Rn+1 and α = (α1, . . . , αn+1),

|α| =
∑n+1
i=1 αi.

• Snz := {ω ∈ TzM : gz(ω, ω) = 1}, the unit sphere in the tangent space
TzM and Hs ≡ Hs(Snz ,R), the Sobolev space of the order s.

2. The Lyapunov-Schmidt map: Proof of Theorem 1.1

2.1. Graphs over (geodesic) spheres. We construct CMC hypersurfaces by
deforming geodesic spheres θλ,z of radius λ centred at z. The geodesic spheres are
the images of spheres, Snz := {ω ∈ TzM : gz(ω, ω) = 1}, in the tangent space TzM
nderu the exponential map expz(v) and can be parametrized by θλ,z : Snz → M ,
where

θλ,z(ω) = expz(λω), z ∈ Rn+1, ω ∈ Snz(2.1)

As usual, expz(0) = z and ∂λ expz(0) = ω. Abusing notation, we define the graph
over the sphere Snz (or the corresponding geodesic sphere) as (cf. (1.5))

θρ,z(ω) = expz(ρ(ω)ω), ρ(ω) = λ(1 + φ(ω))(2.2)

We introduce the topology on the space of graphs over Snz as follows. We say
the graph ψ′ = θρ′,z′ is close to ψ = θρ,z iff it can be written as ψ′(ω) =
expψ(ω)(ξ(ω)ω), with ξ sufficiently small in an appropriate norm (Hk).

2.2. The Lyapunov-Schmidt map. Let dH denote the Gâuteaux derivative of
a map H (dH(ψ)η := ∂sH(ψs)

∣∣
s=0

for ψs with ψs=0 = ψ and ∂sψs
∣∣
s=0

= η) and
let

Ĥ(θ) = H(θ)− H̄(θ)(2.3)

Lemma 2.1. Let ρ(ω) = λ(1 + φ(ω)). Then the Gâteaux derivative, L0,z :=

dφ
(
λĤ(θρ,z)

)∣∣
φ=0,λ=0

, of Ĥ at θλ,z equals

L0,zu = −(∆Sn + n)u+
n

|Sn|

∫
Sn
u(2.4)
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Moreover, L0,z is self-adjoint on L2(Sn), its spectrum is discrete and non-negative
and its kernel is spanned by constants and the coordinate functions ωi for ω =
(ω1, . . . , ωn+1) ∈ Sn.

Proof. The formula (2.4) can be read off from the expansion (A.3) of the mean
curvature H(θρ,z), included in Appendix A. It also follows from Proposition 2.5
of [9].

The spectral properties of L0,z are part of the standard theory. �

We will look for a solution of (1.3) of the form (2.2) with

ρ(ω) = λ
(
1 + φ(ω)

)
, φ ⊥ ωi, i = 0, . . . , n+ 1, ω0 := 1.(2.5)

The conditions on φ imply
∫
Sn φ = 0 and therefore

λ = 〈ρ〉 =

∫
Sn ρ

|Sn|
.

(By Lemma B.2, with φλ,z = 0, any ψ = θρ,z sufficiently close to a geodesics
sphere is of the form (2.2), with (2.5).)

Definition 2.2. Let P0 be the L2(Sn)-orthogonal projection onto NullL0,z, which
is the span of the eigenvectors 1, ω1, . . . , ωn+1 of −∆Sn − n, with the eigenvalues

−n, 0, and let P̄0 := 1− P0, the orthogonal projection onto
(

NullL0,z

)⊥
.

Consider the equation for φ ∈ P̄0H
k, k > n

2 + 2,

F (φ, λ, z) = 0, where F (φ, λ, z) := P̄0λĤ(θλ(1+φ),z)(2.6)

Remark 2.3. We observe that the function λĤ(θλ(1+φ),z) has by definition zero

mean, i.e., it is L2-orthogonal to 1. Hence, we need only project it onto the L2-
orthogonal complement of the span of ω1, . . . , ωn+1, but we will keep using the
projection operator P̄0 for consistency with other parts of the proof.

Proposition 2.4. For λ sufficiently small, equation (2.6) has a unique solution
φ = φλ,z in a small ball in P̄0H

k, for k > n
2 + 2, which satisfies the estimate

‖∂rλ∂αz φλ,z‖Hk . λ2−r, r + |α| ≤ 2(2.7)

Proof. The proof is an application of the inverse function theorem. We have the
following properties:
(i) The map F : P̄0H

k × R≥0 × Rn → P̄0H
k−2 is smooth;

(ii) F (0, 0, z) = 0,
(iii) dφF (0, 0, z) is invertible.

(i) and (ii) are standard and follow from Lemma A.1 of Appendix A.

For (iii) we mention that, since L0,z is self-adjoint and has purely discrete spec-
trum and NullL0 =Range(1− P̄0), the operator dφF (0, 0, z) = P̄0L0,z is invertible
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on Ran P̄0. Hence, by the IFT there exists a unique solution φ to (2.6) for every
λ sufficiently small.

To prove the estimates (2.7), we use the expansion

λĤ(θλ(1+φ),z) = λĤ(θλ,z) + Lλ,zφ+Nλ,z(φ),(2.8)

where Lλ,z := dφ(λĤ(θρ,z))
∣∣
φ=0

and Nλ,z(φ) is defined by this expression.

Let L̄λ,z = P̄0Lλ,zP̄0. We would like to use the above expansion and invert the
operator L̄λ,z and rewrite equation F (φ, λ, z) = 0 as the fixed point problem,
which we use to estimate φ. This is done with the help of the following lemma.

Lemma 2.5. For λ sufficiently small, the operator L̄λ,z is invertible and we have
the following estimates

‖∂mλ ∂αz L̄−1
λ,zφ‖Hk . ‖φ‖Hk−2 ,(2.9)

‖∂mλ ∂αz F (0, λ, z)‖Hk . λ2−m,(2.10)

‖∂mλ ∂αz Nλ,z(φ)‖Hk−2 . ‖φ‖2Hk(2.11)

and a similar estimate for Nλ,z(φ
′)−Nλ,z(φ), for m+ |α| ≤ 2.

Proof. We write

Lλ,z = L0,z + λ2Mλ,z,(2.12)

where Mλ,z is defined by this expression. By Lemma A.1, we have that

‖(L0,z + 1)−1Mλ,z‖Hk→Hk . 1.(2.13)

By (2.13), ‖L̄−1
0,zλ

2M̄λ,z‖Hk→Hk < 1 for λ sufficiently small and therefore L̄λ,z is
invertible.

Next, let β := (m,α), w := (λ, z) and ∂βw := ∂mλ ∂
α
z . Using the relation ∂L−1 =

−L−1∂LL−1, we see that we have that

‖∂βwL̄−1
λ,z‖Hk−2→Hk =

∑∏
‖∂βiw (λ2L̄λ,z)L̄

−1
λ,z‖Hk→Hk‖L̄

−1
λ,z‖

ri
Hk−2→Hk

where the sum is taken over all partitions of β := (m,α) into smaller integers and
the product over the integers in the given partition which give all the ways of
distributing the partial ∂βw according to ∂L−1 = −L−1∂LL−1. This gives (2.9).

Now, bounds (2.10) and (2.11) follow by comparing the expansion (2.8) with (A.3)
of Appendix A. (2.10), follows from (A.3) with φ = 0 and (2.11), from (A.6). �

Now, using (2.8), we can rewrite equation (2.6) as the fixed point problem

φ = −L−1
λ,z(F (0, λ, z) + P̄0Nλ,z(φ)).(2.14)

Lemma 2.5 implies that this equation has a unique fixed point, φ = φλ,z, in a
small ball in P̄0H

k. Assuming that φ lies in a small ball in P̄0H
k of radius ε > 0,
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we see that the bounds in (2.7) follow from (2.14) and Lemma 2.5. Indeed, we
derive

‖φ‖Hk ≤‖L̄−1
λ,z(F (0, λ, z)‖Hk + ‖L̄−1

λ,zP̄0Nλ,z(φ)‖Hk(2.15)

.λ2 + ‖Nλ,z(φ)‖Hk−2

.λ2 + ‖φ‖2Hk ,

which implies estimate (2.7), with r = 0, α = 0, provided ‖φ‖Hk is sufficiently
small. The estimates for the ∂rλ∂

α
z derivatives of φ are obtained similarly using

the fixed point equation and estimates in Lemma 2.5. Indeed, running through
the same argument as equation (2.15), gives (2.7). �

Define the Lyapunov-Schmidt map, Φλ(z), as

Φλ(z) = θρλ,z,z, where ρλ,z := λ(1 + φλ,z), φλ,z ∈ P̄0H
k solves (2.6).(2.16)

Note that Φλ(z) is a perturbation of the classical exponential map.

2.3. Proof of Theorem 1.1. We begin with part (i). Let ψλ,z := Φλ(z). If ψλ,z,
with λ = λ(h), solves (1.3), then, by Proposition 1.6, dAh(ψλ,z) = 0, for h = h(λ).
Furthermore,

∂ziAh(ψλ,z) = dAh(ψλ,z)∂ziψλ,z(2.17)

for every i. Hence, ∂ziAh(ψλ,z) = 0, i.e. z is a critical point of Ah(ψλ,z).

Conversely, if ∂ziAh(ψλ,z) = 0, we will argue that dAh(ψλ,z) = 0. Define

∂Nziψλ,z := g(∂ziψλ,z, ν(ψλ,z)).(2.18)

Note that the superscript N in ∂Nz ψλ,z depends on ψλ,z.

In the case of the geodesic spheres we have ∂ziθλ,z
∣∣
λ=0

= ∂zi expz(λω)
∣∣
λ=0

=

d expz(0)(∂ziz) = ei, where {ei} is the canonical basis in Rn+1. Therefore ∂Nziθλ,z
∣∣
λ=0

:=

g(ei, ω) = ωi, i = 1, . . . n + 1, which span the null space of L0,z and P0 can be
written as

P0f = gij0 〈f, ∂Nziθλ,z
∣∣
λ=0
〉L2∂Nzjθλ,z

∣∣
λ=0

,(2.19)

where gij0 is the inverse matrix of (g0)ij := 〈∂Nziθλ,z
∣∣
λ=0

, ∂Nzjθλ,z
∣∣
λ=0
〉L2 =

( ∫
Sn ω

2
1

)
δij .

We define the normal L2 gradient, gradNG(ψ), of a functional G(ψ) by∫
Sn

gradN G(ψ)ξ = dG(ψ)ξ,

for any normal variation ξ. Then gradNAh(ψ) = H(ψ) − h. By definition (2.16)

and (2.6), P̄0gradNAh(ψλ,z) = 0. Hence

P0gradNAh(ψλ,z) = gradNAh(ψλ,z)(2.20)
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Remembering (2.18), we define the projection on the span of the non L2-orthogonal
set {∂Nziψλ,z}:

Pλf := gijλ 〈∂
N
ziψλ,z, f〉L2∂Nzjψλ,z,(2.21)

where gijλ is the inverse matrix of (gλ)ij := 〈∂Nziψλ,z, ∂
N
zjψλ,z〉L2 . (For simplicity, we

do not display the dependence on z.) Hence, by the assumption ∂ziAh(ψλ,z) = 0,
we have

PλgradNAh(ψλ,z) = gijλ 〈∂
N
ziψλ,z, gradNAh(ψλ,z)〉L2∂Nzjψλ,z(2.22)

= gijλ ∂
N
ziAh(z)∂Nzjψλ,z = 0.

Lemma 2.6. The difference of the projections P0, Pλ satisfies the estimate

‖P0 − Pλ‖L2→L2 . λ(1 + ‖φλ,k‖Hk + λ‖∂λφλ,z‖Hk)(2.23)

for k > n/2 + 1.

Proof. We show that the eigenfunctions of two projections are close. Let f(λ) :=
∂Nziθρλ,z,z, with ρλ,z := λ(1 + φλ,z). For ω fixed, we note that f(λ)(ω) is smooth
in λ, φλ,z(ω), and ∂zφλ,z(ω). Notice that ∂ziθρλ,z,z |λ=0= ∂ziθλ,z |λ=0. Then

‖∂Nziθλ,z |λ=0 −∂Nziθρλ,z,z‖Hk−1

= ‖f(λ)− f(0)‖Hk−1 . λ
∫ 1

0

‖f ′(tλ)‖Hk−1 dt

. λ(1 + ‖φλ,k‖Hk + λ‖∂λφλ,z‖Hk)

The last inequality and definition (2.21) imply (2.23). �

Combining now (2.20), (2.22) and (2.23) and using

gradNAh(ψλ,z) =P0gradNAh(ψλ,z) = (P0 − Pλ)gradNAh(ψλ,z),

we derive

‖gradNAh(ψλ,z)‖L2 ≤‖P0 − Pλ‖L2 · ‖gradNAh(ψλ,z)‖L2

.λ(1 + ‖φλ,k‖Hk + λ‖∂λφλ,z‖Hk)‖gradNAh(ψλ,z)‖L2

Thus, for λ sufficiently small it follows that gradNAh(ψλ,z) = 0 and therefore
dAh(ψλ,z)ξ = 0 for any normal variation ξ. Since dAh(ψλ,z)ξ = 0 for any tangen-
tial variation ξ, we have dAh(ψλ,z) = 0.

Finally, we show that for λ sufficiently small, the map λ → h(λ) := H(Φλ(z)) is
invertible. Using (2.8) and an expansion of H(θλ,z) in λ (see also (A.3)), we find
that

λh =n+O(λ2 + ‖φ‖Hk)(2.24)

=n+O(λ2)(2.25)

This and a similar estimate for the derivative in λ, together with the IFT, show
that λ→ h(λ) is invertible.
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To prove part (ii) we let A′′h(ψ) := d gradAh(ψ) (the hessian of Ah(ψ)) and use
(2.17) to compute the second derivative of Ah(Φλ(z)):

∂zi∂zjAh(Φλ(z)) =〈A′′h(Φλ(z))∂zjΦλ(z), ∂ziΦλ(z)〉L2

+ 〈gradAh(Φλ(z)), ∂zi∂zjΦλ(z)〉L2(2.26)

By (i), evaluating (2.26) at a critical point z∗ of Ah(Φλ(z)) we have

∂zi∂zjAh(Φλ(z∗)) = 〈A′′h(Φλ(z∗))∂zjΦλ(z∗), ∂ziΦλ(z∗)〉L2(2.27)

As before the one direction is obvious: if A′′h(Φλ(z∗)) is positive, then so is
∂2
zAh(Φλ(z∗)).

We show that ∂2
zAh(Φλ(z∗)) ≥ 0 (> 0) implies A′′h(Φλ(z∗)) ≥ 0 (> 0). Abbreviate

A′′h ≡ A′′h(Φλ(z∗)). By Proposition 1.5, A′′h = dψĤ(ψ)
∣∣
ψ=Φλ(z∗)

and therefore by

the definition Lλ,z := dφ(λĤ(θρ,z))
∣∣
φ=0

, we have that λ2A??h = Lλ,z∗ + O(λ3)

(check!) and by relation (2.12),

λ2A??h = L0,z∗ + λ2Mλ,z∗ +O(λ3)(2.28)

This relation and P̄0L0,zP̄0 & P̄0 give P̄0A
′′
hP̄0 & P̄0. This and (2.23) imply

P̄λA
′′
hP̄λ & P̄λ.

Due to (2.12) and (2.23), the cross-terms P̄λA
′′
hPλ and PλA

′′
hP̄λ areO(λ). These es-

timates can be improved as follows. We recall from (2.20) that P̄0gradNAh(ψλ,z) =
0 for all z. Hence

P̄0A
′′
hPλ = 0.(2.29)

Using this identity, we see that

P̄λA
′′
hPλ =(P̄λ − P̄0)A′′hP = (P0 − Pλ)A′′hPλ

=(P0 − Pλ)PλA
′′
hPλ + (P0 − Pλ)P̄λA

′′
hPλ.

Due to (2.23), this equation can be solved for P̄λA
′′
hPλ, for λ sufficiently small, as

P̄λA
′′
hPλ = SPλA

′′
hPλ, where S = [1− (P0 − Pλ)]−1(P0 − Pλ), which gives

P̄λA
′′
hPλ = P̄λSPλA

′′
hPλ =: P̄λSB.(2.30)

The definitions (2.21) and ψλ,z := Φλ(z) imply

〈ϕ, PλA′′hPλϕ〉 =
∑

v̄i〈∂Nziψλ,z, A
′′
h∂

N
zkψλ,z〉v

k,

where vi :=
∑
j g

ij〈∂Nzjψλ,z, ϕ〉. The latter relation at z = z∗, equality (2.27)

(since the tangential derivatives are zero modes of A′′h one can replace ∂ziψλ,z in
(2.27) by ∂Nziψλ,z) and the assumption that ∂2

zAh(Φλ(z∗)) ≥ 0 (> 0) imply that
B = PλA

′′
hPλ ≥ 0 (> 0). Using this, (2.30) and that ‖S‖ . λ, we find

|〈ϕ, P̄λSBϕ〉| ≤‖B1/2SP̄λϕ‖‖B1/2ϕ‖

≤λC‖B1/2Q‖‖P̄λϕ‖‖B1/2ϕ‖,
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for some constant C . 1, where Q be the finite rank orthogonal projection onto
RanP0 + RranPλ. This gives

2|〈ϕ, P̄λA′′hPλϕ〉| ≤2λC‖P̄λϕ‖‖B1/2ϕ‖

≤λ2(1−ε)C‖P̄λϕ‖2 + λ2ε‖B1/2ϕ‖2

which implies that

〈ϕ,A′′hϕ〉 =〈ϕ,Bϕ〉+ 〈ϕ, P̄λA′′hP̄λϕ〉+ 2 Re〈ϕ, P̄λA′′hPλϕ〉

≥〈ϕ,Bϕ〉+ c‖P̄λϕ‖2 − λ2(1−ε)C‖P̄λϕ‖2 − λ2ε‖B1/2ϕ‖2

for some c & 1. Hence 〈ϕ,A′′hϕ〉 ≥ 0 (> 0) provided λ is sufficiently small. This
proves the assertion and with it part (ii).

Finally, we prove part (iii). By the definition, the unstable part of statement
(iii) follows directly from statement (ii) and a standard argument. To prove the
stability of minimizing CMC’s, we use Theorem 1.4 as follows.

Proof of (iii)(stability). By (1.9), λ → λ∗ for some λ∗ as t → ∞. If z∗ is a strict
local minimum point of A(Φλ(z)) on {Venc(Φλ(z)) = c}, then z(t) → z∗ and
therefore, by (1.7) and (1.10), ψ(t) = θξ(t),ψλ(t),z(t) → θ0,ψλ∗,z∗

= ψλ∗,z∗ . This
shows that the surface ψλ,z∗ is asymptotically stable.

If z∗ is a saddle or local maximum point, then the standard argument and (1.8)
show that z(t) stays away from z∗ however close the initial condition z0 is to z∗.
This implies the same for ψ(t) w.r.to ψλ∗,z∗ . �

Note that if z∗ is a non-degenerate local minimum point ofA(Φλ(z)) on {Venc(Φλ(z)) =
c}, then z(t) → z∗ and therefore ψ(t) → ψλ∗,z∗ exponentially fast. Indeed, the
proof follows from (1.8) in a standard way. Indeed, let a′′h denote the hessian of
ah. Passing to local coordinates, one expands

∇ah(z) = a′′h(z∗)(z − z∗) +O(|z − z∗|2)(2.31)

around z∗ and uses the Duhamel principle to rewrite (1.8) as the fixed point
problem β = Ψ(β), where β(t) = z(t)− z∗ and

Ψ(β)(t) := e−a
′′
h(z∗)tβ(0) +

∫ +∞

0

e−a
′′
h(z∗)(t−s)

[
O(β2(s)) +O(ε2e−δs)

]
ds.(2.32)

If a′′h(z∗) ≥ α > 0, then the standard fixed point argument in the space X :=
C([0,+∞), e−αtRn+1) gives supt(e

αt‖β(t)‖) . 1 and therefore |z(t)− z∗| . e−αt,
which implies that ψ(t) = θξ(t),ψλ(t),z(t) → θ0,ψλ∗,z∗

= ψλ∗,z∗ exponentially fast,
giving the result.

3. Adiabatic dynamics: Proof of Theorem 1.4

Proof of Theorem 1.4. Let ψ(ω) : Sn → M be an immersion of the form ψ(ω) =
θρ,z′(ω) := expz′(ρ(ω)ω) for some ρ and z′. We assume ψ close to some CMC



THE EFFECTIVE DYNAMICS, NOVEMBER 14, 2017 13

surface ψλ′,z′ := Φλ′(z
′) = θλ′(1+φλ′,z′ ),z

′ (in the sense of topology induced by ρ

and z′, see Subsection 2.1). We look for ρ in the form

ρ ≡ ρ(ξ) = λ(1 + φλ,z + ξ),(3.1)

for some λ and z close to λ′ and z′. We note that ξ depends on λ, z, but we drop
this dependence in our notation.

We denote z0 := λ and define

σ(ξ)(ω) := g(ν(θρ,z(ω)), ∂sθs,z(ω) |s=ρ),(3.2)

fi(ξ)(ω) := g(ν(θρ,z(ω)), ∂ziθρ,z(ω)), i = 0, 1, ..., n+ 1.(3.3)

For ξ = 0, we omit the argument 0, e.g. we denote fi(0) = fi, etc.

Having in mind that fi and σ depend on λ and z, we define the barycenter of
ψ = θρ,z′ to be (λ, z) that solve the equation

〈fi, σξ〉 = 0 for i = 0, ..., n+ 1.(3.4)

By Lemma B.2, a unique solution exists provided ψ is sufficiently near some CMC
surface ψλ′,z′ .

Suppose that ψ(ω, t) = θρ(t),z(t)(ω) is a solution to VPF with some initial condition
ψ0 = θρ0,z0 near a CMC surface ψλ′,z′ and let λ(t), z(t) be its barycenter. Then
we see that

∂Nt ψ = fi(ξ)ż
i + λσ(ξ)ξ̇.(3.5)

Our first task is to obtain the effective equation for λ and z. We begin with
rewriting (1.1) as

∂Nt ψ = −∇N(ψ)A(ψ)

on Xk
c and expand the r.h.s. in ξ and divide the resulting equation by (σ(ξ)/σ) =

1 + OHk(ξ). Using (3.5), the definition ψλ,z := Φλ(z) = θλ(1+φλ,z),z and Lemma

B.1, we can rewrite our equation ∂Nt ψ = −∇N(ψ)A(ψ) on Xk
c as

f̃j(ξ)ż
j + λσξ̇ = −∇N(ψλ,z)A(ψλ,z) + λLλ,zξ + λ2OHk(ξ2) + λOHk(|ξ̇|ξ),(3.6)

for z ∈ χc, where f̃j(ξ) := fj(ξ)σ/σ(ξ) = fj+OHk(ξ) and Lλ,z := λdφ∇N(θρ,z)A(θρ,z)|ρ=ρλ,z
(ρ = λ(1 + φ)). Now we multiply the equation by fi, i = 0, ..., n + 1, and divide
the resulting equation by (h(ξ)/h) = 1 + OHk(ξ), where the matrices h and h(ξ)

have the entries hij = 〈fi, fj〉 and hij(ξ) = 〈fi, f̃j(ξ)〉, with i, j = 0, ..., n+ 1. We
have

hij ż
j =− 〈fi,∇N(ψλ,z)A(ψλ,z)〉 − λ〈fi, σξ̇〉 − λ〈fi, Lλ,zξ〉

+ λ2OHk(ξ2) + λOHk(|ξ̇|ξ) +OHk(|ż|ξ).(3.7)

By Lemma B.1, we see that hij ≈ id is invertible. Moreover, by the choice of the
barycenter, we see that

〈fi, σξ̇〉 = −〈∂t(fiσ), ξ〉 = OHk(|ż|ξ).(3.8)
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Set vi = 〈fi,∇N(ψλ,z)A(ψλ,z)〉. Since ∂zjA(ψλ,z) = dA(ψλ,z)∂zjψλ,z =
∫
g(Hν, ∂zjψλ,z) =∫

Hfj + OHk(ξ) since H = O(λ−1) (c.f. Lemma A.1), we have vj = ∂zjv. This
and the fact that fj are almost the null eigenvectors of the linear part Lλ,z imply
(after solving for ż)

ż = −hijvj + λ2OHk(ξ) = −∇v + λ2OHk(ξ)(3.9)

where −∇v = −hij∂zjv for z ∈ χc.
Now to get equation for ξ, let P denote the orthogonal projection onto Span{fi}
and let P̄ = 1− P . Applying P̄ to (3.6) and using P̄ fi = 0, we derive

λP̄ (σξ̇) = −P̄∇N(ψλ,z)A(ψλ,z)− λLλ,zξ − P̄ (f̃i(ξ)− fi)żi + λ2OHk(ξ2)(3.10)

By the choice of barycenter again (see (3.4)),

P̄ (σξ̇) =σξ̇ − P (σξ̇)

=σξ̇ + ∂t(Pσ)ξ(3.11)

So we get

ξ̇ =− σ−1Lλ,zξ +Rem,(3.12)

Rem := −λ−1σ−1
(
P̄∇N(ψ)A(ψ) + λ∂t(Pσ)ξ

+ P̄ (fi(ξ)− fi)żi + λ2OHk(ξ2)
)

(3.13)

Now, using equations (3.9) and (3.12), we estimate ξ. To this end, following [3],
we use the Lyapunov functionals:

Λk(ξ) :=
1

2
〈ξ, (−∆− n)kξ〉.(3.14)

These functionals satisfy the inequalities

Λk(ξ) ≥ (n+ 2)Λk−1(ξ), C‖ξ‖2Hk ≥ Λk(ξ) ≥ c‖ξ‖2Hk(3.15)

for some C, c > 0. As in [3], one uses the equation on ξ, (3.12), to obtain differ-
ential inequalities for Λk(u), which together with (3.15) imply the bound (1.10)
completing the proof of the theorem. �

4. Proof of Theorem 1.3: existence and linear stability/instability

Theorem 1.3(iii) follows readily from Theorem 1.1(iii). Thus we address only the
first two statements.

4.1. Existence of foliations. By Theorem 1.1(i), to prove existence of the CMC’s,
we have to prove existence of critical points of the functionAh(Φλ(a)) := A(Φλ(a))−
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hVenc(Φλ(a)). To this end, we use the following expansion which follows from
Corollary A.2 of Appendix A (see [24], Lemma 2.2):

Ah(Φλ(z)) =λn
(

an
n+ 1

[
1 + n− hλ+ (

hλ

6(n+ 3)
− 1

6
)R(z)λ2

]
+ λ3B

(0)
λ,z(φ) + λ2B

(2)
λ,z(φ)

)
(4.1)

where an denotes the area of the Euclidean unit sphere Sn, R is the scalar curvature

of M and the remainders B
(j)
λ,z(φ), j = 0, 2, satisfy the estimates

|∂iλ∂αz B
(r)
λ,z(φ)| .

∑
j≤i,β≤α

‖∂j
λ∂

α
z φ‖rHk(4.2)

provided ‖φ‖Hk . 1 and i + |α| ≤ 2. (If φ is independent of λ and z, then only
the term with j = |β| = 0 survives on the r.h.s..)

Utilizing the estimate (2.7) and (4.1), the equations ∂zjAh(Φλ(z)) = 0, j =
1, . . . , n+ 1 take the form

∇zR(z) +O(λ2) = 0(4.3)

If λ is sufficiently small, the preceding equation can be solved for z near a non-
degenerate critical point z∗ of R by employing the implicit function theorem. The
latter yields a solution z satisfying

z = z∗ +O(λ2)(4.4)

Since Φλ(z) solves (2.6) and ∂zAh(Φλ(z)) = 0, by Theorem 1.1 (i), it is also a
solution of (1.3).

Equation (1.3) and expansion (A.3) imply the relation between h and λ:

h =
n

λ
+O(λ).(4.5)

Now we show that the solutions Φλ(z∗) actually foliate the neighborhood of z∗.
We exhibit a local homeomorphism from a neighborhood of z∗ to in Rn+1 that
maps each CMC surface into a spherical shell centred at the origin. We simply
use the map (2.16):

Φ :[0, ε)× Sn →M,

(λ, ω) 7→ Φλ(z∗).

where, recall, Φλ(z) := expz(ρλ,zω), ρλ,z := λ(1 + φλ,z). We note that (r, ω) 7→
expz∗(rω) is a local diffeomorphism, so it suffices to show that the map (λ, ω) 7→
(ρλ,z∗), ω) is a homeomorphism. Indeed, taking the Jacobian matrix, we get an
upper diagonal matrix (

∂λρλ,z∗ · · ·
0 idn×n

)
.
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Since ‖∂λρλ,z∗ −1‖∞ = ‖φλ,z∗ +λ∂λφλ,z∗‖∞ . λ2 by Proposition 2.4, we see that
the Jacobian matrix is invertible. It follows by the inverse function theorem that
Φ is a homeomorphism.

The linear stability/instability statement of the theorem follows from the formula
(4.1), the asymptotics (4.5) and Theorem 1.1(ii).
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Appendix A. Expansions of the induced metric and mean curvature

We Taylor expand the induced metric and mean curvature of θρ,z and estimate
the non-linear terms in φ in Hk, k > n

2 + 2. One may consult [18] for a thorough
study on such classical expansions, we mostly follow the notation in [24]. We
abuse slightly notation by denoting the pushforward of ω through dθρ,z by the
same symbol ω. For instance, given xi,∂i a set of coordinates and the associated
vector fields, we write the corresponding basis of tangent vector fields on Snz :
ζi := λ(1 + φ)∂iω + λ∂iφω ∈ TSnz .

Lemma A.1 (See [24], Lemmas 2.1 and 2.4). The following expansions are valid:

λ−2(1 + φ)−2g(ζi, ζj) = g(∂iω, ∂jω) +
1

3
R(ω, ∂iω, ω, ∂jω) · λ2(1 + φ)2(A.1)

+
∂iφ∂jφ

(1 + φ)2
+ λ3R

(0)
λ,z(φ) + λ2R

(2)
λ,z(φ)

where R is the Riemann curvature tensor and the remainders R
(j)
λ,z(φ), j = 0, 2, are

local terms depending on φ and ∂φ and satisfying the estimates

‖∂iλ∂αz R
(r)
λ,z(φ, ∂φ)‖Hk−1 .

∑
j≤i,β≤α

‖∂j
λ∂

β
z φ‖rHk(A.2)

provided ‖φ‖Hk . 1 and i+ |α| ≤ 2, and

λH(θρ,z) = n− 1

3
Riczλ

2 − (∆Sn + n)φ+ λ2M ′λ,zφ(A.3)

+ λ2N ′λ,z(φ) + λ3Hλ,z,

where Ricz : ω → Ricz(ω, ω) (Ric(·, ·) is the Ricci curvature tensor of M), M ′λ,zφ,

N ′λ,z(φ) and Hλ,z are linear non-linear terms in φ and in its derivatives up to
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order two, respectively, and independent of φ term, satisfying the estimates:

‖∂iλ∂αzM ′λ,z(φ)‖Hk−2 .
∑

j≤i,β≤α

‖∂jλ∂
β
z φ‖Hk ,(A.4)

‖∂iλ∂αz N ′λ,z(φ)‖Hk−2 .
∑

j≤i,β≤α

‖∂jλ∂
β
z φ‖2Hk ,(A.5)

‖∂iλ∂αzHλ,z‖Hk−2 . 1,(A.6)

and similarly for N ′λ,z(φ
′) − N ′λ,z(φ), for i + |α| ≤ 2, k > n

2 + 2. (Above, if φ

is independent of λ and z, then only the term with j = |β| = 0 survives on the
r.h.s..)

Proof. Both expressions (A.1) and (A.3) can be read from [24]. Bounds (A.4) are
immediate by definition. In order to derive estimate (A.6) for the non-linearity
Nλ,z(φ) we have to first examine its structure. Recall that the mean curvature of
θρ,z is given by4

H(θρ,z) =
∑
i,j

gijg(∇ζiν, ζj) = divθρ,zν(A.8)

where gij is the inverse matrix to the metric gij := g(ζi, ζj) and ν the outward
unit normal vector field on θρ,z:

ν =
−ω + λ

∑
i,j g

ij∂iφζj√
1− λ2g(∇Snφ,∇Snφ)

(A.9)

Note that ν is well defined for λ and ‖φ‖Hk appropriately small. Hence, we observe
that the non-linear terms in φ arising in the expansion of H(θρ,z) are of the form
b(λφ(ω), λ∂φ(ω))λ∂2φ(ω), where b(s, t) is a simple function, uniformly bounded
together with its derivatives, provided |s| � 1 and |t| � 1. Using these estimates
it is not hard (but somewhat tedious) to show that ‖b(λφ, λ∂φ)λ∂2φ‖Hk−2 .
λr‖φ‖rHk for some r ≥ 2, provided ‖φ‖Hk � 1 (here we use the condition k >
n
2 + 2). This completes the proof of the lemma. �

Eq (A.1) implies

λ−n(1 + φ)−n
√

detgθρ,z = 1 +
1

6
Ric(ω, ω)λ2(1 + φ)2 +

1

2

|∇Snφ|2

(1 + φ)2
(A.10)

+ λ3S
(0)
λ,z(φ) + λ2S

(2)
λ,z(φ)

4Let g be the ambient metric with its associated Christoffel symbols, Γjkl, and ḡ be the pull

back metric of g onto ψ(Sn). In any local coordinate, if ψ is any immersion from Sn to Mn+1,

H = ḡαβgijν
i(∂α∂βψ

j + Γjkl∂αψ
i∂βψ

j)(A.7)

where the Latin indices i, j = 1, ..., n + 1 are for coordinates in the ambient manifold and the
Greek ones 1, ..., n are on Sn and νj is the unit normal vector on ψ(Sn). At ψ(ω), we see that
all geometric quantities are smooth functions of the ambient metric and at most 2 derivatives of

the immersion ψ, all evaluated at ω. We remark that, however, dependence on top (2nd) order

derivative is linear and comes from the ∇α∇βψ term above.
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where Ric is the Ricci curvature tensor of M and S
(0)
λ,z, r = 0, 2, are local terms

depending on φ and ∂φ satisfying the estimates

‖∂iλ∂αz S
(r)
λ,z(φ, ∂φ)‖Hk−1 . ‖φ‖rHk(A.11)

provided ‖φ‖Hk . 1 and i+ |α| ≤ 2. Furthermore, multiplying (A.10) by λn(1 +
φ)n, integrating over Sn and taking into account that

∫
Sn φ = 0, and using the

co-area formula and polar coordinates, we obtain:

Corollary A.2. We have the following expansions

A(Φλ(z)) = λn
(
an
[
1− 1

6(n+ 1)
R(z)λ2

]
+ λ3Q

(0)
λ,z(φ) + λ2Q

(2)
λ,z(φ)(A.12)

where an denotes the area of the Euclidean unit sphere Sn and R is the scalar
curvature of M , and

Venc(Φλ(z)) = λn+1

(
an
n+ 1

[
1− 1

6(n+ 3)
R(z)λ2

]
+ λ3T

(0)
λ,z(φ) + λ2T

(2)
λ,z(φ)

(A.13)

The remainders Q
(r)
λ,z and T

(r)
λ,z above are local expression in φ, ∂φ satisfying the

estimates of the type of (4.2).

Appendix B. Existence of barycenter

In this section, we show that barycenter exists. That is, we show that equation
(3.4) has a solution. To begin, we state some useful estimates.

Lemma B.1. For the terms defined in equations (3.2) - (3.3), we have the esti-
mate

‖σ − 1‖Hk−1 . λ‖φλ,z‖Hk(B.1)

‖σ(ξ)− σ‖Hk−1 . λ‖ξ‖Hk(B.2)

‖fi − ωi‖Hk−1 . λ(1 + ‖φλ,z‖Hk + ‖∂ziφλ,z‖Hk) for i = 1, ..., n+ 1(B.3)

‖fi(ξ)− fi‖Hk−1 . λ‖ξ‖Hk for i = 1, ..., n+ 1(B.4)

‖f0 − 1‖Hk−1 . λ‖∂λφλ,z‖Hk + ‖φλ,z‖Hk(B.5)

‖fi(ξ)− fi‖Hk−1 . λ‖ξ‖Hk(B.6)

Proof. Recall that ψ(ω) = expz(ρ(ξ)ω), where ρ(ξ) := λ(1 + φλ,z + ξ). Using the
definitions (3.2), we compute the difference, σ(ξ) − σ. To this end, it suffices to
compute the differences of each factor in (3.2):

σ(ξ)− σ =gψ(ν(θρ(ξ),z(ω)), ∂sθs,z(ω) |s=ρ(ξ))− gθλ,z)(ν(θρ(0),z(ω)), ∂sθs,z(ω) |s=ρ(0))

=gψ(ν(θρ(ξ),z(ω)), ∂sθs,z(ω) |s=ρ(ξ))− gψ(Tν(θρ(0),z(ω)), T∂sθs,z(ω) |s=ρ(0))
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where T is the parallel transport from θλ,z(ω) to ψ(ω). Continuing the estimate,
we have

=gψ(ν(θρ(ξ))− Tν(θρ(0),z(ω)), ∂sθs,z(ω) |s=ρ(ξ))
+ gψ(Tν(θρ(0),z(ω)), ∂sθs,z(ω) |s=ρ(ξ) −T∂sθs,z(ω) |s=ρ(0)).

Recalling that θλ,z = expz(ρ(0)ω) and letting ω0 := 1, we find furthermore

g(ν(θρ(0),z(ω)), ∂sθs,z(ω) |s=ρ(0)) |λ=0= g(ν(θλ,z(ω)) |λ=0, ∂sθs,z(ω) |s=0) = 1

g(ν(θρ(0),z(ω)), ∂ziθρ(0),z(ω)) |λ=0= ωi, i = 0, 1, ..., n+ 1.

Similarly, we write fi(ξ) − fi. Hence, using this, we only need to estimate the
following items to complete the proof:

gp − gp′
T (s)− T (s′)

∂s expz(sω) |s=s1 −T (s1 − s2, expz(s2ω))∂s expz(sω) |s=s2
∂z expz(s1ω)− T (s1 − s2, expz(s2ω))∂z expz(s2ω)

ρ(ξ)− ρ(0)

∂λρ− ∂λρ |φλ,z=0

ρ(ξ)

ν(ψ)− T (λ, θλ,z)ν(θλ,z)

where gp is the value of the metric at p, T (s, z) is parallel transport from z along
ω for time s. Then the difference of quantities in the statement of the question
are composition and smooth functions of the above with at most two derivatives
of φλ,z and ξ. Note that the first four quantities only depends on the ambient
geometry of Mn+1. Since we are working lcoally, we may assume that we are
working on a compact subset of M . Thus, the first four are smooth functions, the
first four quantity exhibits Lipschitz estimates in the difference in their argument.
For example,

|∂z expz(s1ω)− T (s1 − s2, expz(s2ω))∂z expz(s2ω)| . |s1 − s2|

uniformly on Mn+1. The next 3 expressions have the obvious estimate

‖ρ(ξ)− ρ(0)‖Hk = λ‖ξ‖Hk
‖∂λρ− ∂λρ |φλ,z=0 ‖Hk . λ‖∂λφλ,z‖Hk + ‖φλ,z‖Hk
‖∂zρ− ∂zρ |φλ,z=0 ‖Hk . λ(‖∂zφλ,z‖Hk + ‖φλ,z‖Hk)

‖ρ(ξ)‖Hk . λ(‖ξ‖Hk + ‖φλ,z‖Hk).

Finally, the last one follows from the fact ν(ψ) is a none singular rational function
of ψ. �
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Now, let

P (λ, zψ) :R× Rn+1 ×Hk → R× Rn+1

=(〈f0σ, ξ〉, · · · , 〈fn+1σ, ξ〉)

where ξ is defined by equation (3.1).

Lemma B.2. Any ψ sufficiently close to a CMC θλ0,z0 = expz0(λ0(1 + φλ0,z0))
can be written in the form (2.2), with (3.1) and λ and z satisfying the equation

P (λ, z, ψ) = 0

Proof. We note that P (λ0, z0, θλ0,z0) = 0. By the implicit function theorem, it
suffices to show that

(i) P is C1, and
(i) (∂λ,zP )(λ0, z0, θλ0,z0) is an invertible matrix.

(i) We check, by definition of fi and ξ, that they are real functions of λ, z and
φλ,z up to 1 derivative. Since φλ,z is C1 in λ and z (c.f. Proposition 2.4), we see
that fi and σ are C1 in λ and z. Since P is linear in ξ, using the estimate of
Proposition 2.4 again, we see that P is C1 in ψ as well.

(ii) We compute

(∂λ,zP )(λ0, z0, θλ0,z0) = (〈fiσ, ∂λ,zξ〉)(B.7)

since ξ = 0 for ψ = θλ0,z0 . To compute ∂λξ, we use the fact that, by definition of
ξ,

expz0(λ(1 + φλ,z0 + ξ)ω) = expz0(λ0(1 + φλ0,z0)ω)(B.8)

for λ sufficiently close to λ0. (Note that we suppressed the identification Iz be-
tween TzM and Rn+1 here as z is not varied.) Taking ∂λ and evaluate at λ = 0,
we get the result of

∂s expz0(sω) |s=λ0(1+φλ0,z0 ) (1 + φλ0,z0 + λ0∂λφλ,z0 |λ=λ0
+λ0∂λξ |λ=λ0

) = 0

(B.9)

Contracting with ν(θλ0,θ0), we get

0 = f0 + λ0σ∂λξ,(B.10)

where the last line follow from Proposition 2.4. To compute ∂zξ |λ0,z0 , we consider
curves z(t) : (−ε, ε) → M with z(0) = z0 and ż(0) = v for any v ∈ Tz0M fixed.
Then any variation of

expz(t)(λ0(1 + φλ0,z(t) + ξ)Iz(t)(ω))(B.11)

is tangential. Taking derivative with respect to t and setting t = 0, we see that
the expression (B.11) becomes

[(∂x expx(λ0(1 + φλ0,z0)Ix(ω))) |x=z0

+ ∂s expz0(sω) |s=λ0(1+φλ0,z0 ) (λ0∂zφλ0,z |z=z0 +λ0∂zξ |z=z0)]ż(0)
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Using the fact that varying z is only tangential, it follows that

0 =g(ν(θλ0,z0), [(∂x expx(λ0(1 + φλ0,z0)Ix(ω))) |x=z0(B.12)

+ ∂s expz0(sω) |s=λ0(1+φλ0,z0 ) (λ0∂zφλ0,z |z=z0)]v)(B.13)

+ g(ν(θλ0,z0), λ0∂zξ |z=z0)v)(B.14)

for any v ∈ TzM . By definition of fi,

fi + λ0σ∂ziξ = 0(B.15)

It follows that

(∂λ,zP )(λ0, z0, θλ0,z0) = −λ−1
0 〈fi, fj〉(B.16)

is invertible by Lemma B.1. �
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