Instructor: B. Khesin

Course MAT461S
Spring 2023
"Hamiltonian Mechanics"

Problem Set 2 (due Tuesday Feb. 28):

Only the best 5 problems count (4pts each).
Main source: [Ar] textbook by V. Arnold, see
https://www.math.toronto.edu/khesin/biblio/arnold_Math_Methods89.pdf

1. Obtain the Euler-Lagrange equation for the brachistochrone problem (the curve minimizing the travel time between two fixed points on the plane with different x and y coordinates. Verify that cycloids are solutions (google the necessary equations and properties of cycloids).

Find the extremal(s) among functions $y(t)$ for each of the following:
2.

$$
\Phi(y)=\int_{0}^{1} \frac{\sqrt{1+\left(y^{\prime}\right)^{2}}}{y} d t \quad \text { with } \quad y(0)=0, y(1)=\sqrt{3}
$$

(Hint: use the substitution $y^{\prime}=\tan z$.)
3.

$$
\Phi(y)=\int_{1}^{2}\left(y^{\prime}+t^{2}\left(y^{\prime}\right)^{2}\right) d t \quad \text { when } y(1)=0, y(2) \text { free }
$$

4.

$$
\Phi(y)=\int_{0}^{1}\left(\frac{1}{2}\left(y^{\prime}\right)^{2}+y y^{\prime}+y+y^{\prime}\right) d x \quad \text { when } y(0), y(1) \text { are both free }
$$

5 (p. 62 of $[\operatorname{Ar}]$). Let $f(x)=x^{\alpha} / \alpha$. Show that the Legendre transform of f is $g(p)=p^{\beta}$, where $(1 / \alpha)+(1 / \beta)=1$. (Here $\alpha>1$ and $\beta>1$.)
6. Prove the following simplified version of the Poincaré recurrence / Birkhoff ergodic theorem: Let $f(\phi)=\sum_{|k| \leq K} a_{k} e^{i k \phi}$ be any trigonometric polynomial on the circle S^{1}, and $\mathbf{f}:=(1 / 2 \pi) \int_{S^{1}} f(\phi) d \phi$ is its space average. Let α be an angle noncommensurable with π, i.e. $\pi \alpha \notin \mathbf{Q}$. Define a new function \tilde{f} on the circle by

$$
\tilde{f}(\phi):=\lim _{N \rightarrow \infty} \frac{f(\phi)+f(\phi+\alpha)+\ldots+f(\phi+(N-1) \alpha)}{N} .
$$

(This function is called the time average of f.) Then for all $\phi \in S^{1}$ this limit exists and $\tilde{f}(\phi)=\mathbf{f}$.

Hint: use the formula for the sum of a finite geometric progression.

