LECTURE 1: DIFFERENTIAL FORMS

1. 1-FORMS ON \mathbb{R}^{n}

In calculus, you may have seen the differential or exterior derivative $d f$ of a function $f(x, y, z)$ defined to be

$$
d f=\frac{\partial f}{\partial x} d x+\frac{\partial f}{\partial y} d y+\frac{\partial f}{\partial z} d z .
$$

The expression $d f$ is called a 1 -form. But what does this really mean?
Definition: A smooth 1 -form ϕ on \mathbb{R}^{n} is a real-valued function on the set of all tangent vectors to \mathbb{R}^{n}, i.e.,

$$
\phi: T \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

with the properties that

1. ϕ is linear on the tangent space $T_{x} \mathbb{R}^{n}$ for each $x \in \mathbb{R}^{n}$.
2. For any smooth vector field $v=v(x)$, the function $\phi(v): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is smooth.

Given a 1 -form ϕ, for each $x \in \mathbb{R}^{n}$ the map

$$
\phi_{x}: T_{x} \mathbb{R}^{n} \rightarrow \mathbb{R}
$$

is an element of the dual space $\left(T_{x} \mathbb{R}^{n}\right)^{*}$. When we extend this notion to all of \mathbb{R}^{n}, we see that the space of 1 -forms on \mathbb{R}^{n} is dual to the space of vector fields on \mathbb{R}^{n}.

In particular, the 1 -forms $d x^{1}, \ldots, d x^{n}$ are defined by the property that for any vector $v=\left(v^{1}, \ldots, v^{n}\right) \in T_{x} \mathbb{R}^{n}$,

$$
d x^{i}(v)=v^{i} .
$$

The $d x^{i}$'s form a basis for the 1 -forms on \mathbb{R}^{n}, so any other 1 -form ϕ may be expressed in the form

$$
\phi=\sum_{i=1}^{n} f_{i}(x) d x^{i} .
$$

If a vector field v on \mathbb{R}^{n} has the form

$$
v(x)=\left(v^{1}(x), \ldots, v^{n}(x)\right),
$$

then at any point $x \in \mathbb{R}^{n}$,

$$
\phi_{x}(v)=\sum_{i=1}^{n} f_{i}(x) v^{i}(x)
$$

2. p-FORMS ON \mathbb{R}^{n}

The 1-forms on \mathbb{R}^{n} are part of an algebra, called the algebra of differential forms on \mathbb{R}^{n}. The multiplication in this algebra is called wedge product, and it is skew-symmetric:

$$
d x^{i} \wedge d x^{j}=-d x^{j} \wedge d x^{i}
$$

One consequence of this is that $d x^{i} \wedge d x^{i}=0$.
If each summand of a differential form ϕ contains $p d x^{i}$, s , the form is called a p-form. Functions are considered to be 0 -forms, and any form on \mathbb{R}^{n} of degree $p>n$ must be zero due to the skew-symmetry.
A basis for the p-forms on \mathbb{R}^{n} is given by the set

$$
\left\{d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}: 1 \leq i_{1}<i_{2}<\cdots<i_{p} \leq n\right\}
$$

Any p-form ϕ may be expressed in the form

$$
\phi=\sum_{|I|=p} f_{I} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}
$$

where I ranges over all multi-indices $I=\left(i_{1}, \ldots, i_{p}\right)$ of length p.
Just as 1 -forms act on vector fields to give real-valued functions, so p-forms act on p-tuples of vector fields to give real-valued functions. For instance, if ϕ, ψ are 1 -forms and v, w are vector fields, then

$$
(\phi \wedge \psi)(v, w)=\phi(v) \psi(w)-\phi(w) \psi(v)
$$

In general, if $\phi_{1}, \ldots, \phi_{p}$ are 1 -forms and $v_{1} \ldots, v_{p}$ are vector fields, then

$$
\left(\phi_{1} \wedge \cdots \wedge \phi_{p}\right)\left(v_{1}, \ldots, v_{p}\right)=\sum_{\sigma \in S_{p}} \operatorname{sgn}(\sigma) \phi_{1}\left(v_{\sigma(1)}\right) \phi_{2}\left(v_{\sigma(2)}\right) \cdots \phi_{n}\left(v_{\sigma(n)}\right) .
$$

3. The exterior Derivative

The exterior derivative is an operation that takes p-forms to $(p+1)$-forms. We will first define it for functions and then extend this definition to higher degree forms.

Definition: If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable, then the exterior derivative of f is the 1 -form $d f$ with the property that for any $x \in \mathbb{R}^{n}, v \in T_{x} \mathbb{R}^{n}$,

$$
d f_{x}(v)=v(f)
$$

i.e., $d f_{x}(v)$ is the directional derivative of f at x in the direction of v.

It is not difficult to show that

$$
d f=\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} d x^{i} .
$$

The exterior derivative also obeys the Leibniz rule

$$
d(f g)=g d f+f d g
$$

and the chain rule

$$
d(h(f))=h^{\prime}(f) d f .
$$

We extend this definition to p-forms as follows:
Definition: Given a p-form $\phi=\sum_{|I|=p} f_{I} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}$, the exterior derivative $d \phi$ is the $(p+1)$-form

$$
d \phi=\sum_{|I|=p} d f_{I} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}} .
$$

If ϕ is a p-form and ψ is a q-form, then the Leibniz rule takes the form

$$
d(\phi \wedge \psi)=d \phi \wedge \psi+(-1)^{p} \phi \wedge d \psi .
$$

Very Important Theorem: $d^{2}=0$. i.e., for any differential form ϕ,

$$
d(d \phi)=0 .
$$

Proof: First suppose that f is a function, i.e., a 0 -form. Then

$$
\begin{aligned}
d(d f) & =d\left(\sum_{i=1}^{n} \frac{\partial f}{\partial x^{i}} d x^{i}\right) \\
& =\sum_{i, j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} d x^{j} \wedge d x^{i} \\
& =\sum_{i<j}\left(\frac{\partial^{2} f}{\partial x^{j} \partial x^{i}}-\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}\right) d x^{i} \wedge d x^{j} \\
& =0
\end{aligned}
$$

because mixed partials commute.
Next, note that $d x^{i}$ really does mean $d\left(x^{i}\right)$, where x^{i} is the i th coordinate function. So by the argument above, $d\left(d x^{i}\right)=0$. Now suppose that

$$
\phi=\sum_{|I|=p} f_{I} d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}} .
$$

Then by the Leibniz rule,

$$
\begin{aligned}
d(d \phi) & =d\left(\sum_{|I|=p} d f_{I} \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}\right) \\
& =\sum_{|I|=p}\left[d\left(d f_{I}\right) \wedge d x^{i_{1}} \wedge \cdots \wedge d x^{i_{p}}-d f_{I} \wedge d\left(d x^{i_{1}}\right) \wedge \cdots \wedge d x^{i_{p}}+\ldots\right] \\
& =0 . \quad \square
\end{aligned}
$$

Definition: A p-form ϕ is closed if $d \phi=0 . \phi$ is exact if there exists a ($p-1$)-form η such that $\phi=d \eta$.

By the Very Important Theorem, every exact form is closed. The converse is only partially true: every closed form is locally exact. This means that given a closed p-form ϕ on an open set $U \subset \mathbb{R}^{n}$, any point $x \in U$ has a neighborhood on which there exists a $(p-1)$-form η with $d \eta=\phi$.

4. Differential forms on manifolds

Given a smooth manifold M, a smooth 1-form ϕ on M is a real-valued function on the set of all tangent vectors to M such that

1. ϕ is linear on the tangent space $T_{x} M$ for each $x \in M$.
2. For any smooth vector field v on M, the function $\phi(v): M \rightarrow \mathbb{R}$ is smooth.

So for each $x \in M$, the map

$$
\phi_{x}: T_{x} M \rightarrow \mathbb{R}
$$

is an element of the dual space $\left(T_{x} M\right)^{*}$.
Wedge products and exterior derivatives are defined similarly as for \mathbb{R}^{n}. If $f: M \rightarrow \mathbb{R}$ is a differentiable function, then we define the exterior derivative of f to be the 1 -form $d f$ with the property that for any $x \in M, v \in T_{x} M$,

$$
d f_{x}(v)=v(f)
$$

A local basis for the space of 1-forms on M can be described as before in terms of any local coordinate chart $\left(x^{1}, \ldots, x^{n}\right)$ on M, and it is possible to show that the coordinate-based notions of wedge product and exterior derivative are in fact independent of the choice of local coordinates and so are well-defined.

More generally, suppose that M_{1}, M_{2} are smooth manifolds and that F : $M_{1} \rightarrow M_{2}$ is a differentiable map. For any $x \in M_{1}$, the differential $d F$ (also denoted F_{*}) : $T_{x} M_{1} \rightarrow T_{F(x)} M_{2}$ may be thought of as a vector-valued 1-form, because it is a linear map from $T_{x} M_{1}$ to the vector space $T_{F(x)} M_{2}$. There is an analogous map in the opposite direction for differential forms, called the pullback and denoted F^{*}. It is defined as follows.

Definition: If $F: M_{1} \rightarrow M_{2}$ is a differentiable map, then

1. If $f: M_{2} \rightarrow \mathbb{R}$ is a differentiable function, then $F^{*} f: M_{1} \rightarrow \mathbb{R}$ is the function

$$
\left(F^{*} f\right)(x)=(f \circ F)(x)
$$

2. If ϕ is a p-form on M_{2}, then $F^{*} \phi$ is the p-form on M_{1} defined as follows: if $v_{1}, \ldots, v_{p} \in T_{x} M_{1}$, then

$$
\left(F^{*} \phi\right)\left(v_{1}, \ldots, v_{p}\right)=\phi\left(F_{*}\left(v_{1}\right), \ldots, F_{*}\left(v_{p}\right)\right)
$$

In terms of local coordinates $\left(x^{1}, \ldots, x^{n}\right)$ on M_{1} and $\left(y^{1}, \ldots, y^{m}\right)$ on M_{2}, suppose that the map F is described by

$$
y^{i}=y^{i}\left(x^{1}, \ldots, x^{n}\right), \quad 1 \leq i \leq m
$$

Then the differential $d F$ at each point $x \in M_{1}$ may be represented in this coordinate system by the matrix

$$
\left[\frac{\partial y^{i}}{\partial x^{j}}\right]
$$

The $d x^{j}$'s are forms on M_{1}, the $d y^{i}$'s are forms on M_{2}, and the pullback $\operatorname{map} F^{*}$ acts on the $d y^{i}$ s by

$$
F^{*}\left(d y^{i}\right)=\sum_{j=1}^{n} \frac{\partial y^{i}}{\partial x^{j}} d x^{j}
$$

The pullback map behaves as nicely as one could hope with respect to the various operations on differential forms, as described in the following theorem.

Theorem: Let $F: M_{1} \rightarrow M_{2}$ be a differentiable map, and let ϕ, η be differential forms on M_{2}. Then

1. $F^{*}(\phi+\eta)=F^{*} \phi+F^{*} \eta$.
2. $F^{*}(\phi \wedge \eta)=F^{*} \phi \wedge F^{*} \eta$.
3. $F^{*}(d \phi)=d\left(F^{*} \phi\right)$.

5. The Lie Derivative

The final operation that we will define on differential forms is the Lie derivative. This is a generalization of the notion of directional derivative of a function.

Suppose that $v(x)$ is a vector field on a manifold M, and let $\varphi: M \times(-\varepsilon, \varepsilon) \rightarrow$ M be the flow of v. This is the unique map that satisfies the conditions

$$
\begin{gathered}
\frac{\partial \varphi}{\partial t}(x, t)=v(\varphi(x, t)) \\
\varphi(x, 0)=x
\end{gathered}
$$

In other words, $\varphi_{t}(x)=\varphi(x, t)$ is the point reached at time t by flowing along the vector field $v(x)$ starting from the point x at time 0 .

Recall that if $f: M \rightarrow \mathbb{R}$ is a smooth function, then the directional derivative of f at x in the direction of v is

$$
\begin{aligned}
v(f) & =\lim _{t \rightarrow 0} \frac{f\left(\varphi_{t}(x)\right)-f(x)}{t} \\
& =\lim _{t \rightarrow 0} \frac{\left(\varphi_{t}^{*}(f)-f\right)(x)}{t}
\end{aligned}
$$

Similarly, given a differential form ϕ we define the Lie derivative of ϕ along the vector field $v(x)$ to be

$$
\mathcal{L}_{v} \phi=\lim _{t \rightarrow 0} \frac{\varphi_{t}^{*} \phi-\phi}{t}
$$

Fortunately there is a practical way to compute the Lie derivative. First we need the notion of the left-hook of a differential form with a vector field. Given a p-form ϕ and a vector field v, the left-hook $v\lrcorner \phi$ of ϕ with v (also called the interior product of ϕ with v) is the $(p-1)$-form defined by the property that for any $w_{1}, \ldots, w_{p-1} \in T_{x} \mathbb{R}^{n}$,

$$
(v\lrcorner \phi)\left(w_{1}, \ldots, w_{p-1}\right)=\phi\left(v, w_{1}, \ldots, w_{p-1}\right) .
$$

For instance,

$$
\left.\frac{\partial}{\partial x}\right\lrcorner(d x \wedge d y+d z \wedge d x)=d y-d z
$$

Now according to Cartan's formula, the Lie derivative of ϕ along the vector field v is

$$
\left.\left.\mathcal{L}_{v} \phi=v\right\lrcorner d \phi+d(v\lrcorner \phi\right) .
$$

Exercises

1. Classical vector analysis avoids the use of differential forms on \mathbb{R}^{3} by converting 1 -forms and 2 -forms into vector fields by means of the following one-to-one correspondences. $\left(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\right.$ will denote the standard basis $\varepsilon_{1}=$ $\left.[1,0,0], \varepsilon_{2}=[0,1,0], \varepsilon_{3}=[0,0,1].\right)$

$$
\begin{gathered}
f_{1} d x^{1}+f_{2} d x^{2}+f_{3} d x^{3} \longleftrightarrow f_{1} \varepsilon_{1}+f_{2} \varepsilon_{2}+f_{3} \varepsilon_{3} \\
f_{1} d x^{2} \wedge d x^{3}+f_{2} d x^{3} \wedge d x^{1}+f_{3} d x^{1} \wedge d x^{2} \longleftrightarrow f_{1} \varepsilon_{1}+f_{2} \varepsilon_{2}+f_{3} \varepsilon_{3}
\end{gathered}
$$

Vector analysis uses three basic operations based on partial differentiation:

1. Gradient of a function f :

$$
\operatorname{grad}(f)=\sum_{i=1}^{3} \frac{\partial f}{\partial x^{i}} \varepsilon_{i}
$$

2. Curl of a vector field $v=\sum_{i=1}^{3} v^{i}(x) \varepsilon_{i}$:

$$
\operatorname{curl}(v)=\left(\frac{\partial v^{3}}{\partial x^{2}}-\frac{\partial v^{2}}{\partial x^{3}}\right) \varepsilon_{1}+\left(\frac{\partial v^{1}}{\partial x^{3}}-\frac{\partial v^{3}}{\partial x^{1}}\right) \varepsilon_{2}+\left(\frac{\partial v^{2}}{\partial x^{1}}-\frac{\partial v^{1}}{\partial x^{2}}\right) \varepsilon_{3}
$$

3. Divergence of a vector field $v=\sum_{i=1}^{3} v^{i}(x) \varepsilon_{i}$:

$$
\operatorname{div}(v)=\sum_{i=1}^{3} \frac{\partial v^{i}}{\partial x^{i}}
$$

Prove that all three operations may be expressed in terms of exterior derivatives as follows:

1. $d f \leftrightarrow \operatorname{grad}(f)$
2. If ϕ is a 1 -form and $\phi \leftrightarrow v$, then $d \phi \leftrightarrow \operatorname{curl}(v)$.
3. If η is a 2 -form and $\eta \leftrightarrow v$, then $d \eta \leftrightarrow \operatorname{div}(v) d x^{1} \wedge d x^{2} \wedge d x^{3}$.

Show that the identities

$$
\begin{gathered}
\operatorname{curl}(\operatorname{grad}(f))=0 \\
\operatorname{div}(\operatorname{curl}(v))=0
\end{gathered}
$$

follow from the fact that $d^{2}=0$.
2. Let f and g be real-valued functions on \mathbb{R}^{2}. Prove that

$$
d f \wedge d g=\left|\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right| d x \wedge d y
$$

(You may recognize this from the change-of-variables formula for double integrals.)
3. Suppose that ϕ, ψ are 1 -forms on \mathbb{R}^{n}. Prove the Leibniz rule

$$
d(\phi \wedge \psi)=d \phi \wedge \psi-\phi \wedge d \psi
$$

4. Prove the statement above that if $F: M_{1} \rightarrow M_{2}$ is described in terms of local coordinates by

$$
y^{i}=y^{i}\left(x^{1}, \ldots, x^{n}\right), \quad 1 \leq i \leq m
$$

then

$$
F^{*}\left(d y^{i}\right)=\sum_{j=1}^{n} \frac{\partial y^{i}}{\partial x^{j}} d x^{j}
$$

5. Let (r, θ) be coordinates on \mathbb{R}^{2} and (x, y, z) coordinates on \mathbb{R}^{3}. Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be defined by

$$
F(r, \theta)=(\cos \theta, \sin \theta, r)
$$

Describe the differential $d F$ in terms of these coordinates and compute the pullbacks $F^{*}(d x), F^{*}(d y), F^{*}(d z)$.

