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The binormal equation

Let v C R3 be a closed arc-length parametrized curve, v = (s, t).
The vortex filament equation is

Oy =7 x4,

where 7/ := 0v/0s.

Other names: Localized Induction Approximation (LIA) equation,
Da Rios equations (1906)




Vortex rings in nature




In any parametrization it is the
binormal equation
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where k is the curvature of v and
b =1t X nis the binormal unit vector
at any point of 7.

Rings of smaller radius move
faster!
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Properties of the binormal equation

— it is Hamiltonian:
The Hamiltonian function is the length H(~y) = f,y 17 (s)| ds of .

The symplectic structure is the Marsden-Weinstein symplectic
structure w™Won the space of knots:

M) v) = |

il = /u(u, v,v') ds,
v 0!

where u and v are two
vector fields attached to
v, and p is the volume

form in R3.




Properties of the binormal equation

— it is integrable:

To a curve 7 : R — R3 with curvature k and torsion 7, the

Hasimoto transformation assigns the following wave function
v :R—C

(k(s),7(s)) = 1(s) = r(s)e o T,

where sg is some fixed point on the curve.

(The ambiguity in the choice of sp defines the wave function v up
to a phase.)

This Hasimoto map takes the binormal equation to the 1D
nonlinear Schrodinger (NLS) equation on for ¢(-,t) : R — C:

1
O + " + §\¢|2¢ =0.



Properties of the binormal equation

— it is equivalent to a barotropic-type fluid

Introduce the density p = k2 and the velocity v = 27 for a curve v
governed by the binormal flow. Then p and v satisfy the system of
compressible 1D fluid equations:

{ dp + div(pv) =0,

1N\ !
Orv +vv + (—p—2%> =0.

Thus there is an equivalence of three evolution equations:

— the binormal equation
— the 1D nonlinear Schrodinger equation

— the 1D barotropic-type fluid equation.

What of this remains in higher dimensions?
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Vortex membranes

Definition

Let X" C R"*2 be a codimension 2 membrane (i.e., a compact
oriented submanifold of codimension 2 in R"*2).
The skew-mean-curvature (or, binormal) flow of ¥ is

9:p = —J(MC(p)).

where p € ¥, MC(p) is the mean curvature vector to ¥ at p,
the operator J is the positive /2 rotation in the 2-dim normal
plane NpX at p.

Note: It is a generalization of the binormal equation: in 1D > =~

is a curve, MC = kn, where k is the curvature of 7,
—J(MC) = —J(kn) =kb.



Theorem (Haller-Vizman, Shashikanth, K.)

The skew-mean-curvature flow 0:p = —J(MC(p)) is the
Hamiltonian flow on the membrane space equipped with the
Marsden-Weinstein structure and with the Hamiltonian given by
the volume functional vol.

The mean curvature vector
MC(p) at pe ¥ C R"2 s
the average geodesic
curvature of X over all
directions in T,X.

Corollary: The
skew-mean-curvature flow
preserves vol(X).




Properties of the flow

— it is Hamiltonian:

The Hamiltonian function is the n-dim volume vol(X) of
Y C R"2,

The Marsden-Weinstein symplectic structure w™M%on the space of
codimension 2 membranes is

w"(T)(u, v) :/ziuiv,u,

where v and v are two vector fields attached to the membrane %,
and p is the volume form in R™2.



|dea of proof:

The Marsden-Weinstein symplectic structure is the averaging of
the symplectic structures in all 2-dim normal planes N,> to 2.
Hence the skew-gradient is obtained from the gradient field
attached at ¥ C R™?2 by applying the fiberwise 7 /2-rotation
operator J in NpX.

On the other hand, the gradient for the volume functional vol(X)
is —MC(p) at p € . Hence the Hamiltonian field on membranes
is given by —J(MC(p)) at any point p € ¥. QED

Question: Is there an analogue of Hasimoto?



The binormal flow for products of spheres

Let F: ¥ =S™(a) x S¥(b) — R™! x R = RM™++2 pe the
product of two spheres of radiuses a and b.
Theorem (Yang-K.)

The evolution F; of this surface > in the binormal flow is the
product of spheres F+(X) = S™(a(t)) x S¢(b(t)) at any t with
radiuses changing monotonically according to the ODE system:

Lo 2




Chifford tori as vortex membranes

For m =/ one has a(t) = ae~t/(3b) and b(t) = be™/(3b) the

solutions exist for all t € R.
Example: Clifford torus T2 = S! x St ¢ R%.



Example of collapse for products of spheres

Corollary

For 0 < m < { the corresponding solution F; is

a(t) = a™/\m=h) (3 — (¢ - m)b_lt)é/(e_m) and

b(t) _ bﬁ/(ﬁ—m) (b + (m . g)a—lt)m/(m—é) .

It exists only for finite time and collapses at t = a(0)b(0)/(¢ — m).

vV

Example: The simplest case of 0 < m < lis m=1,¢ =2 for
Sl(a) X Sz(b) C R>.
Remark: Since the skew-mean-curvature flow is the LIA of the

Euler equation, this collapse in 5D might be indicative for the
Euler singularity problem in higher dimensions.



The Euler equation of an ideal fluid

For an inviscid incompressible fluid filling a Riemannian manifold M the
fluid motion is described by the classical Euler equation on its velocity v:

8tV + va = —Vp

Here divv = 0 and v is tangent to M. V,v is the Riemannian
covariant derivative.

In any dimension, the vorticity is the 2-form & := dv”, where v° is the
1-form metric-related to the vector field v. In 3D & = curl v.
The vorticity form of the Euler equation is

o0&+ L,E=0,

where L, is the Lie derivative. It means that the vorticity is transported
by (or “frozen into”) the fluid flow.



Generalized Biot-Savart formula

Consider the vorticity 2-form & = dy supported on a membrane
0. RP,

We need to find the divergence-free field v with prescribed vorticity
2-form &, i.e. & = dv” € Q?(R"2). In 3D v = curl '€ is the
field-potential given by the Biot-Savart formula.

Theorem (Shashikanth for 4D, K. for any D)

In any dim, vector field v in R"*? satisfying curlv = & and divv = 0 is
given by the generalized Biot-Savart formula: Vq ¢ %

v(q) = Cy- /z J(ProjyV,G(q, p)) s (p).

where ProjyV ,G(-, p) is the projection of V ,G (-, p) of the Green
function G(-, p) to the normal plane N,X at p € ¥, and py is the
induced Riemannian volume on ¥ C R"+2.




Regularization of velocity

As g — X the vector field v(q) — co. Given € > 0, consider the
truncation: for g € X take the integral not over X but over all points
p € X at the distance at least ¢ from g:

ve(q) := Gy - / J (ProjnV,G(q, p)) 1s(p) -

{P€EX ,|lg—pl|>€}

It is a localized induction
approximation of v.
Similarly regularize the
energy:




Localized Induction Approximation theorem

Theorem (Shashikanth for 4D, K. for any D)

For any dim and a membrane ¥. C R"*2
i) the velocity v satisfying & = dv’ has the LIA truncation v.: for
g € X C R"2 one has

lim ve(q)
e—0 Ine

= Gy J(MC(q)) ;

ii) the regularized energy E.(v) for the velocity of ¥ has the asymptotics:

lim =0
e—0 Ine

= / pup = C, - volume (X).
3

Question: Relation to 5D Euler?



