Geometric Fluid Dynamics

Henan University, Sept - Oct 2021

Boris Khesin (Univ of Toronto)

Lecture 7

The binormal equation

Let $\gamma \subset \mathbb{R}^3$ be a closed arc-length parametrized curve, $\gamma = \gamma(s,t)$. The *vortex filament* equation is

$$\partial_t \gamma = \gamma' \times \gamma'',$$

where $\gamma' := \partial \gamma / \partial s$.

Other names: Localized Induction Approximation (LIA) equation, Da Rios equations (1906)

Vortex rings in nature

In any parametrization it is the binormal equation

$$\partial_t \gamma = \kappa \, \mathbf{b} \,,$$

where κ is the curvature of γ and $\mathbf{b} = \mathbf{t} \times \mathbf{n}$ is the binormal unit vector at any point of γ .

Rings of smaller radius move faster!

Properties of the binormal equation

- it is Hamiltonian:

The Hamiltonian function is the length $H(\gamma) = \int_{\gamma} |\gamma'(s)| \, ds$ of γ . The symplectic structure is the Marsden-Weinstein symplectic structure ω^{MW} on the space of knots:

$$\omega^{MV}(\gamma)(u,v) = \int_{\gamma} i_u i_v \mu = \int_{\gamma} \mu(u,v,\gamma') ds,$$

where u and v are two vector fields attached to γ , and μ is the volume form in \mathbb{R}^3 .

Properties of the binormal equation

– it is integrable:

To a curve $\gamma:\mathbb{R}\to\mathbb{R}^3$ with curvature κ and torsion τ , the *Hasimoto transformation* assigns the following wave function $\psi:\mathbb{R}\to\mathbb{C}$

$$(k(s), \tau(s)) \mapsto \psi(s) = \kappa(s)e^{i\int_{s_0}^s \tau(x) dx},$$

where s_0 is some fixed point on the curve. (The ambiguity in the choice of s_0 defines the wave function ψ up to a phase.)

This Hasimoto map takes the binormal equation to the 1D nonlinear Schrödinger (NLS) equation on for $\psi(\cdot, t) : \mathbb{R} \to \mathbb{C}$:

$$i\partial_t \psi + \psi'' + \frac{1}{2}|\psi|^2 \psi = 0.$$

Properties of the binormal equation

- it is equivalent to a barotropic-type fluid Introduce the density $\rho = \kappa^2$ and the velocity $v = 2\tau$ for a curve γ governed by the binormal flow. Then ρ and v satisfy the system of compressible 1D fluid equations:

$$\begin{cases} \partial_t \rho + \operatorname{div}(\rho v) = 0, \\ \partial_t v + v v' + \left(-\rho - 2\frac{\sqrt{\rho''}}{\sqrt{\rho}}\right)' = 0. \end{cases}$$

Thus there is an equivalence of three evolution equations:

What of this remains in higher dimensions?

What is Localized Induction Approximation (LIA)? Recall that in R3 the Euler eg'n has the vorticity form: 0, 3 = - L v 3 for the field 3 = cuel v Let & be a singular vorticity, supported on a closed curve & CIR3. Note: the Euler dynamics of & is nonlocal: one needs to find v= curl z, which is an integral operator.

Set
$$\xi = c \delta_{\chi}$$
 for the 2-form δ_{χ} supported on $\chi \in \mathbb{R}^3$, ζ is the flux of ξ across a small confour around χ . Symbolically, $\xi(x,t) = c \int \delta(x-\chi(\theta,t)) \frac{\partial \chi}{\partial \theta} d\theta$ where δ is the δ -function in \mathbb{R}^3 θ is the arc-length parameter on χ (of length L_i).

The Biot - Savart law gives for
$$v(x,t) = \text{curl}^{-1} \xi(x,t)$$
:
$$v(x,t) = -\frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{(x-\bar{x}) \times \xi(\bar{x})}{\|x-\bar{x}\|^3} d\bar{x} = -\frac{C}{4\pi} \int_{\mathbb{R}^3} \frac{x-y(\bar{\theta},t)}{\|x-y(\bar{\theta},t)\|^3} \frac{\partial y}{\partial \theta} d\bar{\theta}$$

Since the Euler equation is the evolution given by the velocity
$$V$$
, $\partial_t f(\theta,t) = V(X(\theta,t),t)$, we have $\partial_t X(\theta,t) = -\frac{C}{4\pi} \int_{-\frac{1}{4\pi}}^{\frac{1}{4\pi}} \frac{X(\theta,t) - Y(\overline{\theta},t)}{Y(\theta,t) - Y(\overline{\theta},t)} \times \frac{\partial V}{\partial \theta} d\overline{\theta}$
This integral diverges: it goes to ∞ for small $\theta - \overline{\theta}$! Indeed, consider the Taylor expansion:
$$Y(\theta) = Y(\overline{\theta}) + \frac{\partial V}{\partial \theta}(\theta - \overline{\theta}) + \frac{1}{2}\frac{\partial^2 V}{\partial \theta^2}(\theta - \overline{\theta})^2 + \dots + \frac{\partial V}{\partial \theta} d\overline{\theta}$$
Then $\partial_t Y = -\frac{C}{4\pi} \int_{-\frac{1}{4\pi}}^{\frac{1}{2\pi}} \frac{\partial V}{\partial \theta}(\theta - \overline{\theta}) + \frac{1}{2}\frac{\partial^2 V}{\partial \theta^2}(\theta - \overline{\theta})^2 + \dots + \frac{\partial V}{\partial \theta} d\overline{\theta}$, i.e. $\partial_t Y = \frac{C}{2\pi} \left(\frac{\partial V}{\partial \theta} \times \frac{\partial^2 V}{\partial \theta^2}\right) \left[\int_{-\frac{1}{4\pi}}^{L} \frac{\partial V}{\partial \theta} + O(1)\right]$ as $\theta \to \overline{\theta}$

This integral is oo, but we apply a cut-off beyond $|\theta-\overline{\theta}| \ge \varepsilon$, i.e. $\int \frac{d\overline{\theta}}{|\theta-\overline{\theta}|} \approx \int \frac{d\overline{\theta}}{|\theta-\overline{\theta}|} + O(1) \approx \ln \varepsilon + O(1)$ Now rescale time $t \longrightarrow t \cdot \ln \varepsilon$ and obtain the (local) filament equation $\partial_t \gamma = \frac{\partial \mathcal{E}}{\partial \theta} \times \frac{\partial \mathcal{E}}{\partial \theta^2}$, i.e. $|\partial_t \mathcal{E}| = \mathcal{E}' \times \mathcal{E}''$ Rm For arc-length parameter

8'= t'(unit tangent), 8''= k. n'(normal), b'= t'x n'(Binormal) curvature of o the filament equation is $\partial_{+} \delta = k \cdot b$, binormal equation, valid & parameter.

The Marsden-Weinstein symplectic structure on knots Del An oriented curve T < R3 is a linear functional ly on div-free vector fields in R3: $\frac{2}{2} \left(\left| v \right| \right) = Flux v = \int_{0}^{\infty} i v \mu, \text{ where } \mu - \text{ volume form } in \mathbb{R}^{3}$ 2 - oriented surface bounded by δ , $\delta\delta = \delta$.

Prop $\ell_{\delta}(v)$ does not depend on the choice of δ , provided that $\delta\delta = \delta$. Pf Sinh-Sinh = Sinh = 0, as a closed 2-form inh
2 2 2 208 over a dosed surface 202. (Recall: div M=Lv M=0) QED.

Km Recall that for the Lie algebra of = Vector (R3) the dual space is $g^{\pm} = \Omega^{1}/_{d, \Omega^{0}}(\mathbb{R}^{3}) \simeq d\Omega^{1}(\mathbb{R}^{3}) \simeq Z^{2}(\mathbb{R}^{3})$ the space of closed 2-forms in R3. Let Wy be the 8-type 2-form supported on J. Then $d^{-1}\omega_{g} = u_{g}$, i.e. δ -type 1-form supported on δ , where $\delta\delta = g$ different choices = different choices of 2, s.t. 26=7 of 42 = d'wy

Pf sketch:
$$\omega_{KK}(\overline{s}_{\gamma})(V,W) := \langle d^{-1}\overline{s}, [V,W] \rangle$$

$$= \langle [u_{\delta}], [V,W] = \langle u_{\delta}, c_{[V,W]}] u \rangle$$
Note: for div-free vect. fields V, W one has
the identity: $i_{[V,W]} \mu = di_{V}i_{W}\mu$
Then $\omega_{KK}(\overline{s}_{\gamma})(V,W) = \int u_{\delta} \wedge di_{V}i_{W}\mu$

$$\mathbb{R}^{3}$$

$$= \int du_{\delta} \wedge i_{V}i_{W} \mu = \int \delta_{\delta} \wedge i_{V}i_{W} \mu = \int i_{V}i_{W} \mu.$$

$$\mathbb{R}^{3} \qquad \mathbb{R}^{3} \qquad \mathbb{R}^{3} \qquad \mathbb{R}^{3}$$

$$\mathbb{R}^{3} \qquad \mathbb{R}^{3} \qquad \mathbb{R}^{3}$$
 $\mathbb{R}^{3} \qquad \mathbb{R}^{3} \qquad \mathbb{R}^{3}$

To define dynamics on knots we fix the Euclidean metric in IR3. Let H(r) = length(r) = SV(r'(0), r'(0)d0 be the Hamilton of n (0-arc-length) s' Prop The binormal eg'n of & = 8'x8" is Hamiltonian on 6 with Hamilton. I'm H(x) and the Marsden-Weinstein symplectic strive www. Pf sketch $H(\chi + \epsilon v) = H(\chi) + \epsilon \langle \frac{\delta H}{\delta \chi}, v \rangle + O(\epsilon^2), \epsilon \Rightarrow 0$ Then the veriational derivative $\frac{\delta H}{\delta \chi} = -\chi''$ for arc-length θ Hence $\frac{\partial f}{\partial x} = sgrad H = -\frac{1}{2} \left(\frac{\partial H}{\partial y} \right) = \frac{1}{2} \times \frac{1}{2}$ where $\frac{\pi}{2}$ rotation in the normal plane to j', the almost complex str're. $J * := \delta' \times *$

Rm To see that
$$\frac{\delta H}{\delta \delta} = -\gamma''$$
 expand

H($\xi + \xi V$) = $\int \sqrt{(\xi' + \xi V', \xi' + \xi V')} d\theta =$

= $\int \sqrt{(\xi', \xi')} + 2\xi(\xi', V') + O(\xi^2) d\theta$

s' 1' for arc-length θ

= $\int (1 + \frac{1}{2} \cdot 2\xi(\xi', V') + O(\xi^2)) d\theta = H(\xi) - \xi \int (\xi'', V) d\theta$

S' Hence $\frac{\delta H}{\delta \zeta} = -\zeta''$

Vortex membranes

Definition

Let $\Sigma^n \subset \mathbb{R}^{n+2}$ be a codimension 2 membrane (i.e., a compact oriented submanifold of codimension 2 in \mathbb{R}^{n+2}).

The skew-mean-curvature (or, binormal) flow of Σ is

$$\partial_t p = -J(\mathbf{MC}(p)),$$

where $p \in \Sigma$, $\mathbf{MC}(p)$ is the mean curvature vector to Σ at p, the operator J is the positive $\pi/2$ rotation in the 2-dim normal plane $N_p\Sigma$ at p.

Note: It is a generalization of the binormal equation: in 1D $\Sigma = \gamma$ is a curve, $\mathbf{MC} = \kappa \mathbf{n}$, where κ is the curvature of γ , $-J(\mathbf{MC}) = -J(\kappa \mathbf{n}) = \kappa \mathbf{b}$.

Theorem (Haller-Vizman, Shashikanth, K.)

The skew-mean-curvature flow $\partial_t p = -J(\mathbf{MC}(p))$ is the Hamiltonian flow on the membrane space equipped with the Marsden-Weinstein structure and with the Hamiltonian given by the volume functional vol.

The mean curvature vector $\mathbf{MC}(p)$ at $p \in \Sigma \subset \mathbb{R}^{n+2}$ is the average geodesic curvature of Σ over all directions in $T_p\Sigma$.

Corollary: The skew-mean-curvature flow preserves $vol(\Sigma)$.

Properties of the flow

- it is Hamiltonian:

The Hamiltonian function is the *n*-dim *volume* $\operatorname{vol}(\Sigma)$ of $\Sigma \subset \mathbb{R}^{n+2}$.

The Marsden-Weinstein symplectic structure ω^{MW} on the space of codimension 2 membranes is

$$\omega^{MW}(\Sigma)(u,v)=\int_{\Sigma}i_{u}i_{v}\mu,$$

where u and v are two vector fields attached to the membrane Σ , and μ is the volume form in \mathbb{R}^{n+2} .

Idea of proof:

The Marsden-Weinstein symplectic structure is the averaging of the symplectic structures in all 2-dim normal planes $N_p\Sigma$ to Σ . Hence the skew-gradient is obtained from the gradient field attached at $\Sigma \subset \mathbb{R}^{n+2}$ by applying the fiberwise $\pi/2$ -rotation operator J in $N_p\Sigma$.

On the other hand, the gradient for the volume functional $\operatorname{vol}(\Sigma)$ is $-\mathbf{MC}(p)$ at $p \in \Sigma$. Hence the Hamiltonian field on membranes is given by $-J(\mathbf{MC}(p))$ at any point $p \in \Sigma$. QED

Question: Is there an analogue of Hasimoto?

The binormal flow for products of spheres

Let $F: \Sigma = \mathbb{S}^m(a) \times \mathbb{S}^{\ell}(b) \hookrightarrow \mathbb{R}^{m+1} \times \mathbb{R}^{\ell+1} = \mathbb{R}^{m+\ell+2}$ be the product of two spheres of radiuses a and b.

Theorem (Yang-K.)

The evolution F_t of this surface Σ in the binormal flow is the product of spheres $F_t(\Sigma) = \mathbb{S}^m(a(t)) \times \mathbb{S}^\ell(b(t))$ at any t with radiuses changing monotonically according to the ODE system:

$$\begin{cases} \dot{a} = -\ell/b, \\ \dot{b} = +m/a. \end{cases}$$

Clifford tori as vortex membranes

$$\begin{cases} \dot{a} = -\ell/b, \\ \dot{b} = +m/a. \end{cases}$$

Corollary

For $m = \ell$ one has $a(t) = ae^{-lt/(ab)}$ and $b(t) = be^{mt/(ab)}$, the solutions exist for all $t \in \mathbb{R}$.

Example: Clifford torus $T^2 = S^1 \times S^1 \subset \mathbb{R}^4$.

Example of collapse for products of spheres

Corollary

For $0 < m < \ell$ the corresponding solution F_t is

$$a(t)=a^{m/(m-\ell)}\left(a-(\ell-m)b^{-1}t
ight)^{\ell/(\ell-m)}$$
 and

$$b(t)=b^{\ell/(\ell-m)}\left(b+(m-\ell)a^{-1}t\right)^{m/(m-\ell)}.$$

It exists only for finite time and collapses at $t = a(0)b(0)/(\ell - m)$.

Example: The simplest case of $0 < m < \ell$ is $m = 1, \ell = 2$ for $\mathbb{S}^1(a) \times \mathbb{S}^2(b) \subset \mathbb{R}^5$.

Remark: Since the skew-mean-curvature flow is the LIA of the Euler equation, this collapse in 5D might be indicative for the Euler singularity problem in higher dimensions.

The Euler equation of an ideal fluid

For an inviscid incompressible fluid filling a Riemannian manifold M the fluid motion is described by the classical *Euler equation* on its velocity v:

$$\partial_t \mathbf{v} + \nabla_{\mathbf{v}} \mathbf{v} = -\nabla \mathbf{p}$$
.

Here $\operatorname{div} v = 0$ and v is tangent to ∂M . $\nabla_v v$ is the Riemannian covariant derivative.

In any dimension, the *vorticity is the 2-form* $\xi := dv^{\flat}$, where v^{\flat} is the 1-form metric-related to the vector field v. In 3D $\xi = \operatorname{curl} v$. The *vorticity form of the Euler equation* is

$$\partial_t \xi + L_v \xi = 0,$$

where L_{ν} is the Lie derivative. It means that the vorticity is transported by (or "frozen into") the fluid flow.

Generalized Biot-Savart formula

Consider the vorticity 2-form $\xi_{\Sigma} = \delta_{\Sigma}$ supported on a membrane $\Sigma^n \subset \mathbb{R}^{n+2}$.

We need to find the divergence-free field v with prescribed vorticity 2-form ξ , i.e. $\xi_{\Sigma} = dv^{\flat} \in \Omega^2(\mathbb{R}^{n+2})$. In 3D $v = \operatorname{curl}^{-1}\xi$ is the field-potential given by the Biot-Savart formula.

Theorem (Shashikanth for 4D, K. for any D)

In any dim, vector field v in \mathbb{R}^{n+2} satisfying $\operatorname{curl} v = \xi_{\Sigma}$ and $\operatorname{div} v = 0$ is given by the generalized Biot-Savart formula: $\forall q \notin \Sigma$

$$v(q) := C_n \cdot \int_{\Sigma} J(\operatorname{Proj}_N \nabla_p G(q, p)) \; \mu_{\Sigma}(p) \,,$$

where $\operatorname{Proj}_N \nabla_p G(\cdot, p)$ is the projection of $\nabla_p G(\cdot, p)$ of the Green function $G(\cdot, p)$ to the normal plane $N_p \Sigma$ at $p \in \Sigma$, and μ_{Σ} is the induced Riemannian volume on $\Sigma \subset \mathbb{R}^{n+2}$.

Regularization of velocity

As $q \to \Sigma$ the vector field $v(q) \to \infty$. Given $\epsilon > 0$, consider the truncation: for $q \in \Sigma$ take the integral not over Σ but over all points $p \in \Sigma$ at the distance at least ϵ from q:

$$v_{\epsilon}(q) := C_n \cdot \int_{\{p \in \Sigma, \|q-p\| \geq \epsilon\}} J(\operatorname{Proj}_N \nabla_p G(q, p)) \; \mu_{\Sigma}(p) \,.$$

It is a *localized induction* approximation of *v*. Similarly regularize the energy:

$$E_{\epsilon}(v) := rac{1}{2} \int_{\mathbb{R}^{n+2}} (v, v_{\epsilon}) \, \mu \, ,$$

Localized Induction Approximation theorem

Theorem (Shashikanth for 4D, K. for any D)

For any dim and a membrane $\Sigma \subset \mathbb{R}^{n+2}$

i) the velocity v satisfying $\xi_{\Sigma} = dv^{\flat}$ has the LIA truncation v_{ϵ} : for $q \in \Sigma \subset \mathbb{R}^{n+2}$ one has

$$\lim_{\epsilon \to 0} \frac{v_{\epsilon}(q)}{\ln \epsilon} = C_n \cdot J(\mathbf{MC}(q)) ;$$

ii) the regularized energy $E_{\epsilon}(v)$ for the velocity of Σ has the asymptotics:

$$\lim_{\epsilon \to 0} \frac{E_{\epsilon}(v)}{\ln \epsilon} = C_n \cdot \int_{\Sigma} \mu_P = C_n \cdot \text{volume}(\Sigma).$$

Question: Relation to 5D Euler?