Geometric Fluid Dynamics

Henan University, Sept - Oct 2021

Boris Khesin (Univ of Toronto)

Lecture 5
Energy and helicity

Let M be a simply-connected, Riem. nfd

B - a (magnetic) vector field on M (e.g. $M \subset \mathbb{R}^3$)

$\text{div } B = 0$ w.r.t. $\mu = \text{d}^3x$ - volume form on M

The energy of B is $E(B) = \|B\|^2_{L^2(M)} = \int_{M} (B, B) \mu$

Consider a volume-preserving diffeomorphism $\Psi : M \to \mathbb{R}^3$

Question Given a field B find $a := \inf_{\Psi} E(\Psi \times B)$

Is $a = 0$ or $a > 0$?
Motivation: B - magnetic field of a star (the Sun) "frozen into" the media (plasma), i.e.

$$\frac{\partial B}{\partial t} = -J \times B = -\text{curl}(\mathbf{v} \times \mathbf{B})$$

The star radiates its energy.

Question: Will the star extinguish completely? (will a be positive or $= 0$?)
Topological obstruction:

Assume that \(\text{supp } B = C_1 \cup C_2 \), two solid tori

\[
C_1 \rightarrow \sim \rightarrow C_2
\]

\(E(B) \downarrow \sim \) most orbits shrink

Indeed, length \(\rightarrow \) length/\(\lambda \), time remains the same

\[\Rightarrow B \rightarrow B/\lambda \Rightarrow E \rightarrow E/\lambda^2 \]

But linking prevents tori from infinite fattening, since transformations are volume-preserving.
Prop (Arnold 1973) \(E(B) \geq c |\text{Hel}(B)| \),

where \(\text{Hel}(B) := \int_M (B, \text{curl}^{-1} B) \mu \) - helicity of \(B \),

and \(c = c(M) \). (Note: “geometry \geq topology”)

Then \(c(M) \) is the max abs. value of its eigenvalues, depends on \(M \).
An important example (Moffatt 1969)

For a vector field B as above, without net twist inside C_1, C_2

$\text{Hel}(B) = 2 \text{lk}(C_1, C_2) \cdot \text{Flux}_1 \cdot \text{Flux}_2 \neq 0$

Recall: the linking number of two oriented curves Γ_1 and Γ_2 in M^3 is

$$\text{lk}(\Gamma_1, \Gamma_2) = \# (\delta^{-1} \Gamma_1) \cap \Gamma_2$$

Note: lk is symmetric
- does not depend on the choice of $\delta^{-1} \Gamma_1$
- has a higher-dim generalization
An example: the Hopf field in S^3

For $S^3 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid \sum_{i=1}^4 x_i^2 = 1\}$

define $\nabla (x_1, x_2, x_3, x_4) = (-x_2, x_1, -x_4, x_3)$

Exer ∇ corresponds
to the max eigenvalue $= \frac{1}{2}$
of curl$^{-1}$ on S^3.

\Rightarrow The Hopf field has
the minimal energy
among diffeomorphic ones
(by volume-pres. diffes's)
A metric-free definition of helicity

Let \mathcal{M} be a simply-connected manifold, μ-volume form, and ξ a divergence-free vector field on \mathcal{M}, i.e. $\mathcal{L}_\xi \mu = 0$.

$\omega_\xi := \mathcal{I}_\xi \mu$ is a closed (\Rightarrow exact) 2-form on \mathcal{M}.

Hence $\omega_\xi = dd\alpha$ for some 1-form α.

Definition. The helicity $Hel(\xi)$ of ξ on \mathcal{M} is

$$Hel(\xi) = \int_{\mathcal{M}} \alpha \wedge dd\alpha = \int_{\mathcal{M}} d\alpha \wedge \alpha = \int_{\mathcal{M}} \omega_\xi \wedge d^{-1} \omega_\xi,$$

for $dd\alpha = \omega_\xi$.

Example. $\xi = \text{curl } \nu$. Then

$$Hel(\xi) = \int_{\mathcal{M}} i_\xi \mu \wedge d^{-1} (i_\xi \mu) = \int_{\mathcal{M}} d\mu \wedge \nu = \int_{\mathcal{M}} (\text{curl } \nu, \nu) \mu.$$
Cor (of coord-free def'n of helicity)

The helicity $\text{Hel}(\xi)$ is preserved under the action on ξ of volume-pres. diffeo's of M (i.e. it is a topological invariant).

Rm. This was an "integral def'n" of helicity. What is its topological meaning?

Helicity as an asymptotic linking

Let M be a simply-connected closed 3D mfld with a volume form μ (we do not fix metric now).
Def: For a div-free vector field ζ on M (i.e. $\text{div } \zeta = 0$), introduce the following function $\lambda_\zeta (x,y)$, $x,y \in M$.

Let $g^T(x), g^S(y)$ be pieces of ζ-trajectories for times T, S respectively.

Assume that Δ is a "system of short paths" (joining any pair of pts on M and chosen a priori, e.g. geodesics)

Close up the trajectory pieces by Δ.

Then define

$$\lambda_\zeta (x,y) := \lim_{T,S \to \infty} \frac{1}{T \cdot S} \text{lk} (g^T(x), g^S(y), \Delta)$$
The limit exists for almost all \(x, y \in \mathcal{M} \) and doesn't depend on \(\Delta \) under some cond's (Arnold).

Better: \(\Delta \) is a system of geodesics, the limit exists in \(L^1(\mathcal{M} \times \mathcal{M}) \) (T. Vogel).

It is based on the Birkhoff or \(L^1 \)-ergodic theorems.

Thm (V. Arnold 1973) Helicity \(\text{Hel}(\mathfrak{z}) := \iint (i_z \mu) \, d^{-1} (i_z \mu) \)

is equal to the averaged linking:

\[
\text{Hel}(\mathfrak{z}) = \iint \mathcal{A}_z (x, y) \, \mu_x \, \mu_y
\]

\[\mathcal{M} \times \mathcal{M} \]

It is natural to call it the asymptotic Hopf invariant.
Consider the Biot-Savart integral for vector potential $A = \text{curl}^{-1} \hat{z}$:

$$A(y) = -\frac{1}{4\pi} \int \frac{\hat{z}(x) \times (x-y)}{||x-y||^3} \mu_x$$

Then the helicity is

$$\text{Hel}(3) = \int (3, A) = \frac{1}{4\pi} \iint \frac{(\hat{z}(x), \hat{z}(y), x-y)}{||x-y||^3} \mu_x \mu_y$$

On the other hand, recall the explicit formula for the linking number.
Digression on the Gauss formula

\[\text{Gauss Theorem:} \] The linking number of closed curves \(\gamma_1(S'), \gamma_2(S') \subset \mathbb{R}^3 \) is given by

\[
\text{lk} (\gamma_1, \gamma_2) = \frac{1}{4\pi} \int_0^{T_1} \int_0^{T_2} \frac{(\dot{\gamma}_1(t), \dot{\gamma}_2(t), \gamma_1(t) - \gamma_2(t))}{\| \gamma_1(t) - \gamma_2(t) \|^3} \, dt_1 \, dt_2
\]

Note: \(\text{lk} (\gamma_1, \gamma_2) = \deg (f : T^2 \to S^2) \), where \(f = F / \| F \| \) for the map \(F(t_1, t_2) := \gamma_1(t_1) - \gamma_2(t_2) \).
Hence for 2 pieces of \(\xi \)-trajectories their lk is
\[
\Lambda_\xi(x, y) = \lim_{T, S \to \infty} \frac{1}{4\pi T S} \int_0^T \int_0^S \frac{(x(t), y(s), x(t) - y(s))}{\|x(t) - y(s)\|^3} \, dt \, ds
\]
where \(x(t) = g^t(x) \), and we neglect the integrals over short paths \(\Delta \).

Now the result follows from the Birkhoff ergodic thm: the time average of \(\Lambda_\xi(x, y) \) along the measure-pres. flow of \(\xi \) coincides with the space average, given by the integral expression of \(\text{Hel}(\xi) \). Q.E.D.
Return to energy estimates

Cor. If a div. free field has nonzero helicity, its energy cannot be made arbitrarily small.

But what if $\text{Hel}(\xi) = 0$?

For instance, two pairs of solid tori linked in opposite directions?

Thm. (Freedman-He 1991) Suppose a vector field ξ in \mathbb{R}^3 has an invariant torus T forming a nontrivial knot of type K. Then

$$E(B) \geq \left(\frac{16}{\pi \cdot \text{Vol}(T)} \right)^{\frac{1}{3}} |\text{Flux } B|^{\frac{2}{3}} (2\text{ genus}(K) - 1)$$

Cor. For a nontrivial K, $E(\Phi \times B) > 0$
Cor If a field B has at least one closed linked trajectory of an elliptic type $\Rightarrow E(\pi_x B) > 0$.

The Sakharov–Zeldovich problem
Let B be the rotation field of a ball in \mathbb{R}^3.

Problem: Is $\inf_y E(\pi_y B) = 0$?

Thm (Freedman 1980) There exists a sequence of volume-preserving diffeos $\psi^{(n)} : M \to M$ such that $E(\pi_x \psi^{(n)} B) \to 0$ as $n \to \infty$.
Stretch a subball to shorten trajectory and put the snake obtained inside the sphere. Use Moser's lemma on existence of volume-pres. diffeom to estimate the energy in the shell image.
Another direction: Fast dynamo problem

Def. The kinematic dynamo equation is

\[
\begin{cases}
\partial_t B = -\mathbf{L}_v B + \eta \Delta B \\
\text{div } B = 0
\end{cases}
\]

The unknown magnetic field \(B(t) \) is stretched by the fluid flow with velocity \(\mathbf{v} \), while a low diffusion dissipates the magnetic energy \(E(B) \).

Problem Does there exist a div-free vector field \(\mathbf{v} \) in \(M \) s.t. \(E(B(t)) \) grows exponentially in time (for some initial \(B(0) \)) as \(\eta \to 0 \) or \(\eta = 0 \)?
Look for solutions $B = e^{\lambda(t)}B(0)$ such that $\text{Re} \lambda(\eta) \geq \lambda_0 > 0$ as $\eta \to 0$ or $\eta = 0$.

A non-dissipative dynamo ($\eta = 0$) corresponds to a frozen magnetic field.

There are many works constructing explicit dynamos and proving a necessity of chaotic behavior of ν for $\eta \neq 0$. One of popular examples is the ABC-flow.

The ABC flows (Arnold–Beltrami–Childress) are

$$\nu = (A \sin z + C \cos y) \frac{\partial}{\partial x} + (B \sin x + A \cos z) \frac{\partial}{\partial y} + (C \sin y + B \cos x) \frac{\partial}{\partial z}$$

on 3D torus $T^3 = \{(x, y, z) | \text{mod } 2\pi\}$. They are eigen for curl: $\text{curl } \nu = \nu$.
Bonus: Why Hopf?

Recall: The Hopf invariant of a map $\pi: S^3 \to S^2$ has 2 defs:

- **a) geometric/topological:**
 \[\text{Hopf}_1(\pi) = \text{lk}(\pi^{-1}(a), \pi^{-1}(b)) \]
 It doesn't depend on $a, b \in S^2$

- **b) integral:** take $\nu \in \pi^2(S^2), \int_{S^2} = 1$, then $\pi^*\nu \in \pi^2(S^3)$ is closed \Rightarrow exact on S^3. Then
 \[\text{Hopf}_2(\pi) = \int_{S^3} \pi^*\nu \wedge d^{-1}(\pi^*\nu) \]

Why Hopf_2 is an integer?
Note: in the formula for Hopf the closed 2-form $\tilde{\nu}$ can be replaced by a cohomological one, $\tilde{\nu}$ on S^2, since their difference is exact, $\tilde{\nu} = d\alpha$, $\alpha \in \Omega^1(S^2)$, and

$$\int_{S^3} \pi^* \nu \land \tilde{\nu}^\vee - \int_{S^3} \pi^* \nu \land \tilde{\nu} = \int_{S^3} \pi^* \nu \land \tilde{\nu} = \int_{S^3} \nu \land \alpha = 0 \quad \text{on } S^3 = \pi^{-1}(S^2) \quad S^2$$

Now take $\nu = \delta(a)$, $\tilde{\nu} = \delta(b)$ - the δ-type 2-forms in S^2, supported at pts a and b. Then $\pi^* \nu = \delta(\pi^{-1}(a))$ and $\pi^* \tilde{\nu} = \delta(\pi^{-1}(b))$, δ-type 2-forms in S^3 supported on $\pi^{-1}(a)$, $\pi^{-1}(b)$, and $\pi^{-1}(\tilde{\nu}) = \delta(\pi^{-1}(\tilde{\nu}))$ - 1-form supported on a Seifert surface $\pi^{-1}(a)$ in S^3.

Note:
Hence \(\text{Hopf}_2 (\pi) = \int_{S^3} \pi^* \gamma \wedge d^{-1}(\pi^* \gamma) = \int_{S^3} \pi^* \tilde{\gamma} \wedge d^{-1}(\pi^* \gamma) \)

\[
= \int_{S^3} \delta (\pi^{-1}(b)) \wedge \delta (\pi^{-1}(a)) = \# \pi^{-1}(a) \wedge \pi^{-1}(b)
\]

This proves the equivalence of 2 definitions. Arnold's thin is an asymptotic version of this equivalence. Namely, instead of a map \(\pi : S^3 \to S^2 \) where the fibers are closed (which corresponds to a field \(\xi \) whose all trajectories are closed), consider a div.-free v.f. \(\tilde{\xi} \) with arbitrary trajectories.