Problem 1: [4 points]
On \mathbb{R}^{3} let

$$
\alpha=x^{2} \mathrm{~d} y-3 y \mathrm{~d} x, \quad \beta=y^{2} e^{z} \mathrm{~d} x \wedge \mathrm{~d} z, X=-x \frac{\partial}{\partial z}+z \frac{\partial}{\partial x} .
$$

Calculate (without sign errors!):
a) $\alpha \wedge \beta$
b) $i_{X} \beta$
c) $\mathrm{d} \beta$
d) $i_{X}(\alpha \wedge \beta)$

Problem 2: [4 points]
Consider the 1 -form

$$
\alpha=e^{x y}(y \mathrm{~d} x+x \mathrm{~d} y) \in \Omega^{1}\left(\mathbb{R}^{2}\right)
$$

Let $\gamma:[0,1] \rightarrow \mathbb{R}^{2}$ be the path

$$
\gamma(t)=\left(\sin ^{3}\left(\frac{\pi t}{2}\right), 2 \cos (\pi t)\right)
$$

Find the integral $\int_{\gamma} \alpha$.
Problem 3: [6 points]
Let M be a 3 -dimensional manifold, and $\alpha \in \Omega^{1}(M)$ a 1-form such that

$$
\omega=\mathrm{d} \alpha \wedge \alpha \in \Omega^{3}(M)
$$

is nonzero everywhere. In particular, for all p the covector α_{p} is nonzero, and hence has a 2 dimensional kernel.
a) Suppose $X, Y \in \mathfrak{X}(M)$ are two vector fields with $\alpha(X)=\alpha(Y)=0$. Show that if X_{p}, Y_{p} are linearly independent at some $p \in M$, then the function

$$
\omega(X, Y,[X, Y])
$$

does not vanish at p. (Thus $X_{p}, Y_{p},[X, Y]_{p}$ are linearly independent at p.)
b) Give an example of a 1 -form $\alpha \in \Omega^{1}\left(\mathbb{R}^{3}\right)$ with the property

$$
\mathrm{d} \alpha \wedge \alpha=\mathrm{d} x \wedge \mathrm{~d} y \wedge \mathrm{~d} z
$$

Problem 4: [6 points]
Consider the 1-form

$$
\alpha=\frac{1}{x^{2}+y^{2}}(x \mathrm{~d} y-y \mathrm{~d} x) \in \Omega^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)
$$

a) Find $\int_{\gamma} \alpha$ for the path $\gamma(t)=(\cos (2 \pi k t), \sin (2 \pi k t)), \quad k \in \mathbb{Z}, \quad t \in[0,1]$
b) Let $\gamma:[0,1] \rightarrow \mathbb{R}^{2} \backslash\{0\}$ be a closed path (i.e. $\left.\gamma(0)=\gamma(1)\right)$, parametrized by polar coordinates: $\gamma(t)=(r(t), \theta(t))$ with $r \in \mathbb{R}_{>0}$ and $\theta \in \mathbb{R}$. Express $\int_{\gamma} \alpha$ in terms of the winding number

$$
w(\gamma)=\frac{1}{2 \pi}(\theta(1)-\theta(0))
$$

c) Prove that α is closed.

Extra questions (Do not hand in.)

Problem 5:

Let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be given by $F(x, y)=\left(x^{2}, x y, y^{2}\right)$, and let (u, v, w) be coordinates on the codomain of F. Compute the pullback by F of the 1 -forms $d u, d v, d w$ as well as the 2 -forms $d u \wedge d v, d u \wedge d w, d v \wedge d w$ and finally the 3-form $d u \wedge d v \wedge d w$.

Problem 6:

Let $\alpha \in \Omega^{2}\left(\mathbb{R}^{3} \backslash\{0\}\right)$ be the closed 2-form

$$
\alpha=\frac{1}{\|x\|^{3}}\left(x^{1} \mathrm{~d} x^{2} \wedge \mathrm{~d} x^{3}-x^{2} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{3}+x^{3} \mathrm{~d} x^{1} \wedge \mathrm{~d} x^{2}\right)
$$

Let $f, g: S^{1} \rightarrow \mathbb{R}^{3}$ be two embeddings, with $f(z) \neq g(w)$ for all $z, w \in S^{1}$. Define a smooth map

$$
F: S^{1} \times S^{1} \rightarrow \mathbb{R}^{3}, \quad(z, w) \mapsto f(z)-g(w)
$$

By assumption, this map takes values in $\mathbb{R}^{3} \backslash\{0\}$; hence the linking number

$$
L(f, g):=\int_{S^{1} \times S^{1}} F^{*} \alpha \in \mathbb{R}
$$

is defined. Verify:
a) $L(f, g)$ is is invariant under smooth deformations (isotopies) of f, g (preserving the condition that $f(z) \neq g(w)$ for all $z, w)$. In particular, $L(f, g)=0$ if one of f, g can be deformed to a constant map (while preserving the condition $f(z) \neq g(w)$).
b) The linking number $L(f, g)$ of

$$
f\left(e^{i \theta}\right)=(\cos \theta, \sin \theta, 0), \quad g\left(e^{i \phi}\right)=(0,-1+\cos \phi, \sin \phi)
$$

for $\theta, \phi \in[0,2 \pi]$ is non-zero.

