Problem 1: [4 points] On \mathbb{R}^3 let

$$\alpha = x^2 dy - 3y dx, \quad \beta = y^2 e^z dx \wedge dz, X = -x \frac{\partial}{\partial z} + z \frac{\partial}{\partial x}.$$

Calculate (without sign errors!):

a) $\alpha \wedge \beta$ b) $i_X \beta$ c) $d\beta$ d) $i_X(\alpha \wedge \beta)$

Problem 2: [4 points] Consider the 1-form

$$\alpha = e^{xy}(y\mathrm{d}x + x\mathrm{d}y) \in \Omega^1(\mathbb{R}^2).$$

Let $\gamma \colon [0,1] \to \mathbb{R}^2$ be the path

$$\gamma(t) = \left(\sin^3(\frac{\pi t}{2}), 2\cos(\pi t)\right).$$

Find the integral $\int_{\gamma} \alpha$.

Problem 3: [6 points]

Let M be a 3-dimensional manifold, and $\alpha \in \Omega^1(M)$ a 1-form such that

 $\omega = \mathrm{d}\alpha \wedge \alpha \in \Omega^3(M)$

is nonzero everywhere. In particular, for all p the covector α_p is nonzero, and hence has a 2-dimensional kernel.

a) Suppose $X, Y \in \mathfrak{X}(M)$ are two vector fields with $\alpha(X) = \alpha(Y) = 0$. Show that if X_p, Y_p are linearly independent at some $p \in M$, then the function

$$\omega(X, Y, [X, Y])$$

does not vanish at p. (Thus $X_p, Y_p, [X, Y]_p$ are linearly independent at p.)

b) Give an example of a 1-form $\alpha \in \Omega^1(\mathbb{R}^3)$ with the property

$$\mathrm{d}\alpha \wedge \alpha = \mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z.$$

Problem 4: [6 points] Consider the 1-form

$$\alpha = \frac{1}{x^2 + y^2} (x \mathrm{d}y - y \mathrm{d}x) \in \Omega^1(\mathbb{R}^2 \setminus \{0\}).$$

a) Find $\int_{\gamma} \alpha$ for the path $\gamma(t) = (\cos(2\pi kt), \sin(2\pi kt)), \quad k \in \mathbb{Z}, \ t \in [0, 1]$

b) Let $\gamma: [0,1] \to \mathbb{R}^2 \setminus \{0\}$ be a closed path (i.e. $\gamma(0) = \gamma(1)$), parametrized by polar coordinates: $\gamma(t) = (r(t), \theta(t))$ with $r \in \mathbb{R}_{>0}$ and $\theta \in \mathbb{R}$. Express $\int_{\gamma} \alpha$ in terms of the *winding*

$$w(\gamma) = \frac{1}{2\pi} (\theta(1) - \theta(0)).$$

c) Prove that α is closed.

Extra questions (Do not hand in.)

Problem 5:

number

Let $F : \mathbb{R}^2 \to \mathbb{R}^3$ be given by $F(x, y) = (x^2, xy, y^2)$, and let (u, v, w) be coordinates on the codomain of F. Compute the pullback by F of the 1-forms du, dv, dw as well as the 2-forms $du \wedge dv, du \wedge dw, dv \wedge dw$ and finally the 3-form $du \wedge dv \wedge dw$.

Problem 6:

Let $\alpha \in \Omega^2(\mathbb{R}^3 \setminus \{0\})$ be the closed 2-form

$$\alpha = \frac{1}{||x||^3} (x^1 dx^2 \wedge dx^3 - x^2 dx^1 \wedge dx^3 + x^3 dx^1 \wedge dx^2).$$

Let $f, g: S^1 \to \mathbb{R}^3$ be two embeddings, with $f(z) \neq g(w)$ for all $z, w \in S^1$. Define a smooth map

 $F\colon S^1\times S^1\to \mathbb{R}^3, \ (z,w)\mapsto f(z)-g(w).$

By assumption, this map takes values in $\mathbb{R}^3 \setminus \{0\}$; hence the *linking number*

$$L(f,g) := \int_{S^1 \times S^1} F^* \alpha \in \mathbb{R}$$

is defined. Verify:

a) L(f,g) is is invariant under smooth deformations (isotopies) of f, g (preserving the condition that $f(z) \neq g(w)$ for all z, w). In particular, L(f,g) = 0 if one of f, g can be deformed to a constant map (while preserving the condition $f(z) \neq g(w)$).

b) The linking number L(f,g) of

$$f(e^{i\theta}) = (\cos\theta, \sin\theta, 0), \quad g(e^{i\phi}) = (0, -1 + \cos\phi, \sin\phi)$$

for $\theta, \phi \in [0, 2\pi]$ is non-zero.