Problem #1: [4 points]

Compute the Lie brackets [X, Y] of the vector fields: a)

$$X = e^{y} \frac{\partial}{\partial x} + \sin(x) \frac{\partial}{\partial z}, \quad Y = xy \frac{\partial}{\partial y} + (yz)^{2} \frac{\partial}{\partial z}$$

b)

$$X = e^r \sin(\theta) \frac{\partial}{\partial r}, \quad Y = (r^3 \cos(\theta) + \theta \ln r) \frac{\partial}{\partial \theta}.$$

Problem #2: [6 points]

To any $n \times n$ matrix $A = [a_{ij}] \in \mathbf{Mat}_n(\mathbb{R})$ we may associate the vector field

$$X_A = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x^i \frac{\partial}{\partial x^j}.$$

1) Compute the Lie bracket $[X_A, X_B]$, express it as X_C for some C and explain the relationship between A, B, C in a coordinate-independent fashion.

2) Let ϕ_A^t, ϕ_B^t be the flows of X_A, X_B respectively. Compute the first nonzero term in the Taylor series expansion of the following function of t:

$$F(t) = \phi_A^t \phi_B^t \phi_A^{-t} \phi_B^{-t}.$$

Problem #3: [6 points]

Let $A \in \mathbf{Mat}_n(\mathbb{R})$ be skew-symmetric, i.e. $A + A^{\top} = 0$.

1) Prove that

$$A^L: X \mapsto (X, XA)$$
 and $A^R: X \mapsto (X, AX)$

each defines a vector field on SO(n).

2) Compute the flows of the above vector fields.

3) Let both A and B be skew-symmetric matrices. Compute the Lie brackets $[A^L, B^L]$, $[A^L, B^R]$ and $[A^R, B^R]$.

4) Fix an element $Y \in SO(n)$ and let $L_Y : SO(n) \to SO(n)$ and $R_Y : SO(n) \to SO(n)$ be defined as follows:

$$L_Y(X) = YX, \qquad R_Y(X) = XY.$$

These operations are known as *left multiplication* and *right multiplication* by $Y \in SO(N)$. Prove that both L_Y , R_Y are diffeomorphisms.

5) Prove that A^L is L_Y -related to itself and that A^R is R_Y -related to itself for any $Y \in SO(n)$. This means that A^L is *left-invariant* and A^R is *right-invariant*.

Problem #4: [4 points]

1) Give an example of two vector fields $X, Y \in \mathfrak{X}(\mathbb{R}^3)$ such that for almost all $p \in \mathbb{R}^3$ the three tangent vectors

$$X_p, Y_p, [X,Y]_p$$

are a basis, but for some p they are not. However, at those special points p the three tangent vectors

 $X_p, Y_p, [X, [X, Y]]_p$

form a basis. (Hint: The fields X and Y may span the Martinet distribution.)

2) Prove that any pair of vector fields X, Y with property 1) cannot be tangent to any twodimensional submanifold $S \subset \mathbb{R}^3$.

Problem #5: **Additional problem – will not be graded** Consider

$$S^{3} = \{ (x, y, z, w) \in \mathbb{R}^{4} | x^{2} + y^{2} + z^{2} + w^{2} = 1 \}.$$

a) Show that

$$X = w\frac{\partial}{\partial x} + z\frac{\partial}{\partial y} - y\frac{\partial}{\partial z} - x\frac{\partial}{\partial w}$$

is tangent to S^3 .

b) Find another vector field Y (given by a similar formula) that is also tangent to S^3 , and such that X, Y and Z := [X, Y] span the tangent space $T_p S^3$ for all $p \in S^3$.

Note: Only for n = 1, 3, 7 is it possible to find n vector fields spanning the tangent space to S^n for all $p \in S^n$. For instance the 2-sphere S^2 does not even admit a vector field that is non-zero at all points of S^2 .

Problem #6: **Additional problem – will not be graded**

Consider \mathbb{R}^3 with coordinates x, y, z. Introduce new coordinates u, v, w by setting

$$x = e^u v, \quad y = e^v, \quad z = u v^2 w,$$

valid on the region where $x > y \ge 1$.

a) Express u, v, w in terms of x, y, z.

b) Express the coordinate vector fields $\frac{\partial}{\partial u}$, $\frac{\partial}{\partial v}$, $\frac{\partial}{\partial w}$ as a combination of the coordinate vector fields $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$, $\frac{\partial}{\partial z}$, where the coefficients are functions of x, y, z.

Problem #7: **Additional problem – will not be graded**

Let $\pi: M \to N$ be a surjective submersion. A vector field $X \in \mathfrak{X}(M)$ is called a *lift* of a vector field $Y \in \mathfrak{X}(N)$ if

$$(T_p\pi)(X_p) = Y_{\pi(p)}$$

for all $p \in M$.

Suppose that X_1 is a lift of Y_1 and X_2 is a lift of Y_2 .

1) Show that $[X_1, X_2]$ is a lift of $[Y_1, Y_2]$.

2) Show that $[X_1, X_2]$ is tangent to all fibers $\pi^{-1}(q)$, $q \in N$, if and only if the vector fields Y_1, Y_2 commute, i.e, $[Y_1, Y_2] = 0$.

(Hint: What are the tangent spaces to the fibers in terms of $T_p \pi$?)