Problem \#1: [4 points]
Compute the Lie brackets $[X, Y]$ of the vector fields:
a)

$$
X=e^{y} \frac{\partial}{\partial x}+\sin (x) \frac{\partial}{\partial z}, \quad Y=x y \frac{\partial}{\partial y}+(y z)^{2} \frac{\partial}{\partial z}
$$

b)

$$
X=e^{r} \sin (\theta) \frac{\partial}{\partial r}, \quad Y=\left(r^{3} \cos (\theta)+\theta \ln r\right) \frac{\partial}{\partial \theta} .
$$

Problem \#2: [6 points]
To any $n \times n$ matrix $A=\left[a_{i j}\right] \in \operatorname{Mat}_{n}(\mathbb{R})$ we may associate the vector field

$$
X_{A}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x^{i} \frac{\partial}{\partial x^{j}}
$$

1) Compute the Lie bracket $\left[X_{A}, X_{B}\right]$, express it as X_{C} for some C and explain the relationship between A, B, C in a coordinate-independent fashion.
2) Let $\phi_{A}^{t}, \phi_{B}^{t}$ be the flows of X_{A}, X_{B} respectively. Compute the first nonzero term in the Taylor series expansion of the following function of t :

$$
F(t)=\phi_{A}^{t} \phi_{B}^{t} \phi_{A}^{-t} \phi_{B}^{-t}
$$

Problem \#3: [6 points]
Let $A \in \operatorname{Mat}_{n}(\mathbb{R})$ be skew-symmetric, i.e. $A+A^{\top}=0$.

1) Prove that

$$
A^{L}: X \mapsto(X, X A) \quad \text { and } \quad A^{R}: X \mapsto(X, A X)
$$

each defines a vector field on $S O(n)$.
2) Compute the flows of the above vector fields.
3) Let both A and B be skew-symmetric matrices. Compute the Lie brackets $\left[A^{L}, B^{L}\right],\left[A^{L}, B^{R}\right]$ and $\left[A^{R}, B^{R}\right]$.
4) Fix an element $Y \in S O(n)$ and let $L_{Y}: S O(n) \rightarrow S O(n)$ and $R_{Y}: S O(n) \rightarrow S O(n)$ be defined as follows:

$$
L_{Y}(X)=Y X, \quad R_{Y}(X)=X Y
$$

These operations are known as left multiplication and right multiplication by $Y \in S O(N)$. Prove that both L_{Y}, R_{Y} are diffeomorphisms.
5) Prove that A^{L} is L_{Y}-related to itself and that A^{R} is R_{Y}-related to itself for any $Y \in S O(n)$. This means that A^{L} is left-invariant and A^{R} is right-invariant.

Problem \#4: [4 points]

1) Give an example of two vector fields $X, Y \in \mathfrak{X}\left(\mathbb{R}^{3}\right)$ such that for almost all $p \in \mathbb{R}^{3}$ the three tangent vectors

$$
X_{p}, Y_{p},[X, Y]_{p}
$$

are a basis, but for some p they are not. However, at those special points p the three tangent vectors

$$
X_{p}, Y_{p},[X,[X, Y]]_{p}
$$

form a basis. (Hint: The fields X and Y may span the Martinet distribution.)
2) Prove that any pair of vector fields X, Y with property 1) cannot be tangent to any twodimensional submanifold $S \subset \mathbb{R}^{3}$.

Problem \#5: **Additional problem - will not be graded**
Consider

$$
S^{3}=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x^{2}+y^{2}+z^{2}+w^{2}=1\right\} .
$$

a) Show that

$$
X=w \frac{\partial}{\partial x}+z \frac{\partial}{\partial y}-y \frac{\partial}{\partial z}-x \frac{\partial}{\partial w}
$$

is tangent to S^{3}.
b) Find another vector field Y (given by a similar formula) that is also tangent to S^{3}, and such that X, Y and $Z:=[X, Y]$ span the tangent space $T_{p} S^{3}$ for all $p \in S^{3}$.

Note: Only for $n=1,3,7$ is it possible to find n vector fields spanning the tangent space to S^{n} for all $p \in S^{n}$. For instance the 2-sphere S^{2} does not even admit a vector field that is non-zero at all points of S^{2}.

Problem \#6: ${ }^{* *}$ Additional problem - will not be graded**
Consider \mathbb{R}^{3} with coordinates x, y, z. Introduce new coordinates u, v, w by setting

$$
x=e^{u} v, \quad y=e^{v}, \quad z=u v^{2} w
$$

valid on the region where $x>y \geq 1$.
a) Express u, v, w in terms of x, y, z.
b) Express the coordinate vector fields $\frac{\partial}{\partial u}, \frac{\partial}{\partial v}, \frac{\partial}{\partial w}$ as a combination of the coordinate vector fields $\frac{\partial}{\partial x}, \quad \frac{\partial}{\partial y}, \quad \frac{\partial}{\partial z}$, where the coefficients are functions of x, y, z.

Problem \#7: **Additional problem - will not be graded**
Let $\pi: M \rightarrow N$ be a surjective submersion. A vector field $X \in \mathfrak{X}(M)$ is called a lift of a vector field $Y \in \mathfrak{X}(N)$ if

$$
\left(T_{p} \pi\right)\left(X_{p}\right)=Y_{\pi(p)}
$$

for all $p \in M$.
Suppose that X_{1} is a lift of Y_{1} and X_{2} is a lift of Y_{2}.

1) Show that $\left[X_{1}, X_{2}\right]$ is a lift of $\left[Y_{1}, Y_{2}\right]$.
2) Show that $\left[X_{1}, X_{2}\right]$ is tangent to all fibers $\pi^{-1}(q), q \in N$, if and only if the vector fields Y_{1}, Y_{2} commute, i.e, $\left[Y_{1}, Y_{2}\right]=0$.
(Hint: What are the tangent spaces to the fibers in terms of $T_{p} \pi$?)
