Problem \#1: [4 points]
Consider the map

$$
F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, \quad(r, \theta) \mapsto(x, y)=\left(e^{r+\theta} \cos \theta, e^{r+\theta} \sin \theta\right)
$$

For $p=\left(r_{0}, \theta_{0}\right)$, with image point $F(p)=\left(x_{0}, y_{0}\right)$, find

$$
\left(T_{p} F\right)\left(\left.\frac{\partial}{\partial \theta}\right|_{p}\right),\left(T_{p} F\right)\left(\left.\frac{\partial}{\partial r}\right|_{p}\right) .
$$

Note: The result should be expressed in terms of $\left.\frac{\partial}{\partial x}\right|_{F(p)},\left.\frac{\partial}{\partial y}\right|_{F(p)}$; the answer should only contain x, y variables, not r, θ variables.

Problem \#2: [4 points]
Find the (integer) degree of the map $f: S^{n} \rightarrow S^{n}$ of the unit sphere, where for $x=\left(x_{0}, \ldots, x_{n}\right) \in$ $S^{n} \subset \mathbb{R}^{n+1}$
a) the map f is the antipodal map $f(x)=-x$.
b) $f\left(x_{0}, \ldots, x_{n}\right)=\left(x_{\sigma(0)}, \ldots, x_{\sigma(n)}\right)$ for some permutation $\sigma \in S_{n+1}$ of the indices.

Problem \#3: [6 points]
Let $S^{2} \subset \mathbb{R}^{3}$ be the 2-sphere, and define

$$
T S^{2}=\left\{(p, v) \in \mathbb{R}^{3} \times \mathbb{R}^{3} \mid p \in S^{2}, v \in T_{p} S^{2}\right\}
$$

It may be regarded as a level set of the function $F: \mathbb{R}^{6} \rightarrow \mathbb{R}^{2}, F(p, v)=(p \cdot p, p \cdot v)$.
a) Find the differential $(a, w) \mapsto\left(T_{(p, v)} F\right)(a, w)$.
b) Show that $T S^{2}$ is a 4-dimensional submanifold of \mathbb{R}^{6}.
c) Show similarly that $M=\left\{(p, v) \in T S^{2} \mid v \cdot v=1\right\}$ is a 3-dimensional submanifold of \mathbb{R}^{6}.

Remark: The manifold M has interesting properties: Both maps $(p, v) \mapsto p,(p, v) \mapsto v$ are surjective submersions $M \rightarrow S^{2}$, with fibers diffeomorphic to S^{1}; the map $(p, v) \mapsto(v, p)$ restricts to a diffeomorphism of M interchanging these two maps.

Problem \#4: [6 points]
Let A, B, C be distinct real numbers.
a) Calculate the Jacobian of the map

$$
F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{5}, \quad(x, y, z) \mapsto\left(y z, x z, x y, A x^{2}+B y^{2}+C z^{2}, x^{2}+y^{2}+z^{2}-1\right)
$$

and show that it has maximal rank except at $(0,0,0) .{ }^{* *}$ Hints** You may want to consider three cases $x=0, y z \neq 0$, and $x=y=0, z \neq 0$, and $x y z \neq 0$. There are more cases, but those follow 'by symmetry'. Also, you may find it useful to observe that when $A u+B v+C w=0$ and $u+v+w=0$, then the vanishing of one of u, v, w implies the vanishing of the other two.
b) Describe the tangent space (as a three-dimensional plane in \mathbb{R}^{5}) to the image $F\left(\mathbb{R}^{3}\right) \subset \mathbb{R}^{5}$ at the point $F(0,1,2)$.
c) Using the results from part a), show that the map

$$
f: S^{2} \rightarrow \mathbb{R}^{4},(x, y, z) \mapsto\left(y z, x z, x y, A x^{2}+B y^{2}+C z^{2}\right)
$$

is an immersion. (Here $S^{2}=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2}=1\right\}$.)
d) Show that the map

$$
g: \mathbb{R} \mathrm{P}^{2} \rightarrow \mathbb{R}^{4},(x: y: z) \mapsto \frac{1}{x^{2}+y^{2}+z^{2}}\left(y z, x z, x y, A x^{2}+B y^{2}+C z^{2}\right)
$$

is an injective immersion. Since $\mathbb{R} P^{2}$ is compact, it is an embedding.
${ }^{* *}$ Hint** To show that g is an immersion, use that $f=g \circ \pi$ where $\pi: S^{2} \rightarrow \mathbb{R} \mathrm{P}^{2}$ is the quotient map.

Problem \# 5: ${ }^{* *}$ Additional problem - will not be graded**
Let $S \subset \mathbb{R}^{3}$ be a 2-dimensional submanifold, and let

$$
f: S \rightarrow \mathbb{R}, \quad f(x, y, z)=z
$$

Show that $p \in S$ is a critical point for f if and only if the tangent space $T_{p} S \subset \mathbb{R}^{3}$ is the x - y plane.
${ }^{* *}$ Hint:** View f as the restriction of a function $g: \mathbb{R}^{3} \rightarrow \mathbb{R},(x, y, z) \mapsto z$.
Problem \#6: **Additional problem - will not be graded**
Let $F: M \rightarrow N$ be a submersion. Show that for any submanifold $S \subset N$, the pre-image

$$
F^{-1}(S) \subset M
$$

is a submanifold.
Hint: Use the normal form for submersions.
Problem \# 7: **Additional problem - will not be graded**
A planar arm consists of a number n of rigid unit length segments in a plane, joined end-to-end, starting with an end with fixed position and ending with a free end.
a) Define a bijection between the space of configurations X of such a planar arm with n segments and the n-dimensional torus $T^{n}=\left(S^{1}\right)^{n}$.
b) If the fixed end is located at $(0,0) \in \mathbb{R}^{2}$, define the map $f: X \rightarrow \mathbb{R}^{2}$ on any configuration by taking the position of its free end. Describe precisely the critical points and critical values of this map.
c) Consider the configurations $Y \subset X$ where the free end is constrained to lie on the positive x-axis $\{(x, y): x>0, y=0\}$. Prove that Y is a smooth submanifold.
d) On this submanifold $Y \subset X$, consider the function $g: Y \rightarrow \mathbb{R}$ given by the distance of the free end from the fixed end. Describe carefully the critical points and critical values of this map in the cases $n=2,3,4$.
e) In the case $n=3$, prove that $g^{-1}(2)$ is diffeomorphic to S^{1}.
f) In the case $n=4$, prove that $g^{-1}(3)$ is diffeomorphic to S^{2}. What is $g^{-1}(1)$?

