Problem 1: [4 points] Let *M* be the closed subset of the projective plane defined by

$$M = \{ (x : y : z) \in \mathbb{R}P^2 \mid x^2 \le 2yz - z^2 \}.$$

- a) Determine the images of M in all three charts of the standard atlas of $\mathbb{R}P^2$.
- b) Sketch the images of M in all three charts.

Problem 2: [4 points] Consider the family of functions $f_{a,b} : \mathbb{R}^2 \to \mathbb{R}$, $f_{a,b}(x,y) = y^2 + x^3 + bx + a$ depending on two real parameters a, b. Describe the set $\Sigma \subset \mathbb{R}^2 = \{(a, b)\}$ of all parameters (a, b) for which 0 is a critical value of $f_{a,b}$.

Remark: This set is called the bifurcation diagram of the singularity A_2 .

Problem 3: [2+1+1=4 points]For a real 2 × 2-matrix

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{Mat}_{\mathbb{R}}(2),$$

let ||A|| be the norm, defined as $||A||^2 = \operatorname{tr}(A^T A)$.

a) Use the regular value theorem to show that the set

$$S = \{A \in \operatorname{Mat}_{\mathbb{R}}(2) \mid ||A|| = 1, \ \det(A) = 0\}$$

is a 2-dimensional submanifold of $\operatorname{Mat}_{\mathbb{R}}(2) \simeq \mathbb{R}^4$.

b) Show that the map

$$\pi: S \to \mathbb{R}P^1$$

taking $A \in S$ to its (1-dimensional) kernel ker $(A) \subset \mathbb{R}^2$ is smooth, and determine its fibers $\pi^{-1}(u:v)$, for $u^2 + v^2 = 1$.

c) Show that S is a 2-torus.

Remark: This gives another embedding of a 2-torus as a submanifold of S^3 , where the 3-sphere is realized as the set of A such that ||A|| = 1. Again, one finds that the two regions bounded by this 2-torus are solid 2-tori.

Problem 4: [2+2=4 points]

Let $B \in \text{Sym}_{\mathbb{R}}(n)$ be a given symmetric $n \times n$ matrix, $B^{\top} = B$, with $\det(B) \neq 0$. Let $\mathcal{G} \subset \text{Mat}_{\mathbb{R}}(n)$ be the set of matrices A satisfying

$$A^{+}BA = B$$

Thus $\mathcal{G} = F^{-1}(B)$ where $F(A) = A^{\top}BA$.

a) Find the differential $D_A F$: $\operatorname{Mat}_{\mathbb{R}}(n) \to \operatorname{Sym}_{\mathbb{R}}(n)$.

b) Show that for all A satisfying $A^{\top}BA = B$, the differential is surjective, so that \mathcal{G} is a submanifold. What is its dimension?

Problem 5: [2+2=4 points]

Let $\pi : S^3 \to S^2$ be the Hopf map. Viewing S^3 as the unit sphere inside $\mathbb{C}^2 = \mathbb{R}^4$, and S^2 as $\mathbb{C}P^1$, it is given by the map $(z, w) \mapsto (z : w)$. Let (U_0, ϕ_0) , (U_1, ϕ_1) be the standard atlas for $\mathbb{C}P^1$. We suggest writing elements of U_0 in the form (1 : u), and those of U_1 in the form (v : 1).

(a) Give explicit diffeomorphisms

$$F_i: U_i \times S^1 \to \pi^{-1}(U_i),$$

such that $(\pi \circ F_i)(p, e^{i\theta}) = p$ for all $p \in U_i$. (We regard S^1 as the set of complex numbers $e^{i\theta}$ of absolute value 1.)

(b) Each of the two maps F_0 , F_1 restricts to a diffeomorphism

$$(U_0 \cap U_1) \times S^1 \to \pi^{-1}(U_0 \cap U_1).$$

Compute the diffeomorphism

$$K: (U_0 \cap U_1) \times S^1 \to (U_0 \cap U_1) \times S^1$$

such that $F_1 = F_0 \circ K$.

Problem 6: **Additional problem – will not be graded**

Let $\mathrm{SL}^{\pm}(2,\mathbb{R}) \subset \mathrm{Mat}_{\mathbb{R}}(2)$ be the group of 2×2 -matrices of determinant +1 or -1.

a) Show that $SL^{\pm}(2,\mathbb{R})$ is a submanifold of $Mat_{\mathbb{R}}(2)$.

b) Show $\mathrm{SL}^{\pm}(2,\mathbb{R})$ has two components, both of which are diffeomorphic to $S^1 \times \mathbb{R}^2$. In particular, $\mathrm{SL}^{\pm}(2,\mathbb{R})$ is non-compact.

c) Let $q : \operatorname{Mat}_{\mathbb{R}}(2) \setminus \{0\} \to S^3$ be the map $A \mapsto A/||A||$, in the notation of Problem 2. Show that the restriction of this map to $\operatorname{SL}^{\pm}(2,\mathbb{R})$ is an inclusion as an open subset, and that the complement is exactly the 2-torus described in problem 2. That is, S^3 is a smooth (!) compactification of the non-compact group $\operatorname{SL}^{\pm}(2,\mathbb{R})$.

Problem 7: **Additional problem – will not be graded**

Sketch the levels $f^{-1}(0)$ for various values of parameters (a, b) off and on $\Sigma \subset \mathbb{R}^2$ in Problem 1. These are nondegenerate and degenerate real cubic curves. Try to trace how the curves change when parameters "pass" through Σ .

Problem 8: **Additional problem – will not be graded**

Let M be a manifold, S a submanifold of M, and R a submanifold of S. Show that R is a submanifold of M.