Problem 1: [4 points] Let M be the closed subset of the projective plane defined by

$$
M=\left\{(x: y: z) \in \mathbb{R} P^{2} \mid \quad x^{2} \leq 2 y z-z^{2}\right\} .
$$

a) Determine the images of M in all three charts of the standard atlas of $\mathbb{R} P^{2}$.
b) Sketch the images of M in all three charts.

Problem 2: [4 points] Consider the family of functions $f_{a, b}: \mathbb{R}^{2} \rightarrow \mathbb{R}, f_{a, b}(x, y)=y^{2}+x^{3}+b x+a$ depending on two real parameters a, b. Describe the set $\Sigma \subset \mathbb{R}^{2}=\{(a, b)\}$ of all parameters (a, b) for which 0 is a critical value of $f_{a, b}$.

Remark: This set is called the bifurcation diagram of the singularity A_{2}.
Problem 3: $[2+1+1=4$ points $]$
For a real 2×2-matrix

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \operatorname{Mat}_{\mathbb{R}}(2)
$$

let $\|A\|$ be the norm, defined as $\|A\|^{2}=\operatorname{tr}\left(A^{T} A\right)$.
a) Use the regular value theorem to show that the set

$$
S=\left\{A \in \operatorname{Mat}_{\mathbb{R}}(2) \mid\|A\|=1, \quad \operatorname{det}(A)=0\right\}
$$

is a 2-dimensional submanifold of $\operatorname{Mat}_{\mathbb{R}}(2) \simeq \mathbb{R}^{4}$.
b) Show that the map

$$
\pi: S \rightarrow \mathbb{R} P^{1}
$$

taking $A \in S$ to its (1-dimensional) $\operatorname{kernel} \operatorname{ker}(A) \subset \mathbb{R}^{2}$ is smooth, and determine its fibers $\pi^{-1}(u: v)$, for $u^{2}+v^{2}=1$.
c) Show that S is a 2 -torus.

Remark: This gives another embedding of a 2-torus as a submanifold of S^{3}, where the 3-sphere is realized as the set of A such that $\|A\|=1$. Again, one finds that the two regions bounded by this 2-torus are solid 2-tori.

Problem 4: $[2+2=4$ points $]$
Let $B \in \operatorname{Sym}_{\mathbb{R}}(n)$ be a given symmetric $n \times n$ matrix, $B^{\top}=B$, with $\operatorname{det}(B) \neq 0$. Let $\mathcal{G} \subset \operatorname{Mat}_{\mathbb{R}}(n)$ be the set of matrices A satisfying

$$
A^{\top} B A=B
$$

Thus $\mathcal{G}=F^{-1}(B)$ where $F(A)=A^{\top} B A$.
a) Find the differential $D_{A} F: \operatorname{Mat}_{\mathbb{R}}(n) \rightarrow \operatorname{Sym}_{\mathbb{R}}(n)$.
b) Show that for all A satisfying $A^{\top} B A=B$, the differential is surjective, so that \mathcal{G} is a submanifold. What is its dimension?

Problem 5: $[2+2=4$ points $]$
Let $\pi: S^{3} \rightarrow S^{2}$ be the Hopf map. Viewing S^{3} as the unit sphere inside $\mathbb{C}^{2}=\mathbb{R}^{4}$, and S^{2} as $\mathbb{C} P^{1}$, it is given by the map $(z, w) \mapsto(z: w)$. Let $\left(U_{0}, \phi_{0}\right),\left(U_{1}, \phi_{1}\right)$ be the standard atlas for $\mathbb{C} P^{1}$. We suggest writing elements of U_{0} in the form $(1: u)$, and those of U_{1} in the form $(v: 1)$.
(a) Give explicit diffeomorphisms

$$
F_{i}: U_{i} \times S^{1} \rightarrow \pi^{-1}\left(U_{i}\right)
$$

such that $\left(\pi \circ F_{i}\right)\left(p, e^{i \theta}\right)=p$ for all $p \in U_{i}$. (We regard S^{1} as the set of complex numbers $e^{i \theta}$ of absolute value 1.)
(b) Each of the two maps F_{0}, F_{1} restricts to a diffeomorphism

$$
\left(U_{0} \cap U_{1}\right) \times S^{1} \rightarrow \pi^{-1}\left(U_{0} \cap U_{1}\right) .
$$

Compute the diffeomorphism

$$
K:\left(U_{0} \cap U_{1}\right) \times S^{1} \rightarrow\left(U_{0} \cap U_{1}\right) \times S^{1}
$$

such that $F_{1}=F_{0} \circ K$.
Problem 6: ${ }^{* *}$ Additional problem - will not be graded**
Let $\mathrm{SL}^{ \pm}(2, \mathbb{R}) \subset \operatorname{Mat}_{\mathbb{R}}(2)$ be the group of 2×2-matrices of determinant +1 or -1 .
a) Show that $\mathrm{SL}^{ \pm}(2, \mathbb{R})$ is a submanifold of $\operatorname{Mat}_{\mathbb{R}}(2)$.
b) Show $\mathrm{SL}^{ \pm}(2, \mathbb{R})$ has two components, both of which are diffeomorphic to $S^{1} \times \mathbb{R}^{2}$. In particular, $\mathrm{SL}^{ \pm}(2, \mathbb{R})$ is non-compact.
c) Let $q: \operatorname{Mat}_{\mathbb{R}}(2) \backslash\{0\} \rightarrow S^{3}$ be the map $A \mapsto A /\|A\|$, in the notation of Problem 2. Show that the restriction of this map to $\mathrm{SL}^{ \pm}(2, \mathbb{R})$ is an inclusion as an open subset, and that the complement is exactly the 2-torus described in problem 2 . That is, S^{3} is a smooth (!) compactification of the non-compact group $\mathrm{SL}^{ \pm}(2, \mathbb{R})$.

Problem 7: ${ }^{* *}$ Additional problem - will not be graded**
Sketch the levels $f^{-1}(0)$ for various values of parameters (a, b) off and on $\Sigma \subset \mathbb{R}^{2}$ in Problem 1. These are nondegenerate and degenerate real cubic curves. Try to trace how the curves change when parameters "pass" through Σ.

Problem 8: ${ }^{* *}$ Additional problem - will not be graded**
Let M be a manifold, S a submanifold of M, and R a submanifold of S. Show that R is a submanifold of M.

