Problem 1 (6 points). Regard the Klein bottle as obtained from a square by the boundary identifications

Using such gluing diagrams, explain that it is possible to cut the Klein bottle along a circle, in such a way that the resulting 'surface with boundary' is either
a) a cylinder (with two boundary circles).
b) a single Möbius strip.
c) a disjoint union of two Möbius strips.

Problem 2 (5 points). The real projective plane $\mathbb{R} \mathrm{P}^{2}$ can be obtained from the 2 -sphere S^{2}, realized as the level set $x^{2}+y^{2}+z^{2}=1$, by *antipodal identification*, identifying a point $p=$ (x, y, z) with the antipodal point $-p=(-x,-y,-z)$.

What surface is obtained by antipodal identification of a 2-torus, embedded as the set of all $p=(x, y, z)$ with

$$
\left(\sqrt{x^{2}+y^{2}}-R\right)^{2}+z^{2}=r^{2}
$$

for $0<r<R$? Explain your answer in words and/or pictures; without giving a detailed mathematical proof.

Problem 3 (5 points). Consider a different version of stereographic projection for the 2 -sphere $S^{2} \subset \mathbb{R}^{3}$, as follows. As in class, let $\mathrm{n}=(0,0,1)$ and $\mathrm{s}=(0,0,-1)$ be the north and south poles, and put $U=S^{2} \backslash\{\mathrm{~s}\}, \quad V=S^{2} \backslash\{\mathrm{n}\}$.

Let $\phi: U \rightarrow \mathbb{R}^{2}$ be the map taking $p=(x, y, z)$ to the unique (u, v) such that $p^{\prime}=(u, v, 3)$ is on the line through p and s. Let $\psi: V \rightarrow \mathbb{R}^{2}$ be the map taking $p=(x, y, z)$ to the unique (u, v) such that $p^{\prime}=(u, v,-2)$ is on the line through p and n .
a) Explain (e.g., by drawing a picture) what the map ϕ is geometrically. (Of course, for ψ it will be similar.)
b) Give explicit formulas for $\phi(x, y, z)$ and $\psi(x, y, z)$.
c) Compute the transition map $\phi \circ \psi^{-1}: \psi(U \cap V) \rightarrow \phi(U \cap V)$.

Problem 4 (4 points). Let $M \subset \mathbb{R}^{2}$ be the boundary of a square with vertices at $(\pm 1, \pm 1)$:

$$
M=\left\{(x, y) \in \mathbb{R}^{2}| | x \mid \leq 1 \text { and }|y| \leq 1, \text { with }|x|=1 \text { or }|y|=1\right\}
$$

Decide whether or not the charts $(U, \phi),(V, \psi)$ given as

$$
\begin{aligned}
U & =\{(x, y) \in M \mid y>-1\}, \quad \phi: U \rightarrow \mathbb{R}, \quad(x, y) \mapsto \frac{x}{1+y} \\
V & =\{(x, y) \in M \mid y<1\}, \quad \psi: V \rightarrow \mathbb{R}, \quad(x, y) \mapsto \frac{x}{1-y}
\end{aligned}
$$

define an atlas on M. Justify your answer.

Problem 5 (Additional problem - will not be graded). Explain the following facts:
a) "Cutting an Möbius strip along its central circle gives a cylinder."
b) "Consider a regular hexagon in which every two opposite sides are identified in a parallel way. The surface obtained this way is a torus."

Problem 6 (Additional problem - will not be graded). Given two surfaces Σ_{1}, Σ_{2}, one can construct a new surface, denoted $\Sigma_{1} \# \Sigma_{2}$, by taking the 'connected sum'. This is done by removing small disks from Σ_{1}, Σ_{2}, and gluing the resulting surfaces with boundary along their boundary circles.
a) Show that $\mathbb{R} P^{2} \# \mathbb{R} P^{2}$ is a Klein bottle.
b) Let Σ be a non-orientable surface. Explain why the connected sum of Σ with a 2 -torus is the same as the connected sum with a Klein bottle.

Problem 7 (Additional problem - will not be graded). Show that the set M of affine lines in \mathbb{R}^{3} is a manifold. Sketch a construction of an atlas for this manifold. What is the dimension?

Problem 8 (Additional problem - will not be graded). Describe an atlas for the set of orbits (phase curves) of the differential equation on the plane:

$$
d x / d t=y, \quad d y / d t=0
$$

