Integration of differential forms (6.9-6.10)

For a top degree form \(w \in \Omega^m(U) \), and \(\text{supp } w \subseteq U \)
(\text{here } \text{supp } w = \text{closure of subset where } w \neq 0), \ w = f(x_1 dx_{m-1} \ldots dx_m

\[\int w = \int f(x) \, dx_1 \ldots dx_m \]

For \(U \subseteq M \subset \mathbb{R}^m \) with \(\text{supp } w \subseteq U \)

we consider \((\mathcal{U}_i)^* w = \int f_i dx_{m-1} \ldots dx_m \)

For another chart \((\mathcal{V}_j)^* w = g_j dx_{m-1} \ldots dx_m \)

and for \(F = \psi \circ \mathcal{U}_i \), \(y = F(x) \),

\[F^*(dy_1 \ldots dy_m) = \det \frac{\partial F}{\partial x} \, dx_1 \ldots dx_m \]

Then \(\int g(y) \, dy_1 \ldots dy_m = \int g(F(u)) \left| \det \frac{\partial F}{\partial x} \right| dx_1 \ldots dx_m \)

\[\psi^*(w) = \text{change of variable} \]

Note: charts must be oriented, \(\det \frac{\partial F}{\partial x} > 0 \)

If \(\text{supp } w \neq U \), use partition of unity: \(\chi_i \in C_c^{\infty}(M) \),

\[\text{supp } \chi_i \subseteq U_i, \quad \sum_{i=1}^M \chi_i = 1, \quad \int w = \sum_{i=1}^M \int \chi_i \, w \]

It doesn't depend on the partition. For \(B_j, \quad \sum B_j = 1 \)

\[\int w = \sum_{j=1}^M \int \chi_j \, w = \sum_{j=1}^M \sum_{i=1}^M \chi_i \, (\chi_j \, w) = \sum_{j=1}^M \chi_j \, \sum_{i=1}^M \chi_i \, w = \sum_{i=1}^M \chi_i \, w = \int w \]

Def. For \(S \subseteq M \) - k-dim oriented submanifold, \(C: S \rightarrow M \)

\[\int_S w = \int i^* w \]

Also works for \(V \subset S \rightarrow M \)

\[\int_S w = \int \pi^* w \]

Ex. \(f: \mathbb{R} \rightarrow M \) - intersection of 1-forms \(f \):
Stokes' Theorem (due to Maxwell, 6.11)

A region \(w \) smooth boundary in \(M \) is a closed subset \(D \subset M \) s.t. \(f \in C^0(w) \) where \(0 \)-reg. value, \(D = \{ p \in M \mid f(p) < 0 \} \)

\[\partial D = \{ p \in M \mid f(p) = 0 \} \]

One can give \(D \) a structure of a manifold with boundary.

\(\{(U, \varphi)\} \) of two types:

- \(\varphi(U) \subset \mathbb{R}^n \), differentiable
- \(\varphi(U \cap D) = \varphi(U) \cap \{ x \in \mathbb{R}^n \mid x_n = 0 \} \)

Prop. \(\partial D \) furthermore the restriction \(\varphi|_{\partial D} \) gives an oriented atlas for \(\partial D \).

Indeed, if \(\varphi, \psi \) map to \(x_1 \leq 0, y_1 \leq 0 \), then

\[\frac{\partial y_1}{\partial x_1} > 0, \quad \frac{\partial y_1}{\partial x_j} = 0, \quad x_1 = 0, \quad y_1 > 0, \quad j > 1 \]

Cor. \(\partial D \) is an oriented manifold.

Its orientation is "induced" by \(x_1 < 0 \), i.e. \(x_1 \) pointing as an exterior normal.

Consider \(\int_{\partial D} \omega = \sum_{i=1}^n x_i \omega \)

\[\int_D \omega \]
Thus (Stokes' theorem). Let \(M \) be an oriented manifold of dim \(m \), and \(D \subseteq M \) a region w boundary \(\partial D \).

Let \(\alpha \in \Omega^m(M) \) s.t. \(\text{supp } \alpha \cap \partial D \) is cpt. Then,

\[
\int_D d\alpha = \int_{\partial D} \alpha
\]

Proof.

Note: \(\int_D \alpha := \int i^*\alpha \) for \(i: \partial D \to M \)

\[
\int_D \alpha = \int_{\partial D} \sum_i f_i^*(x_i) dx_1 \wedge \ldots \wedge dx_n
\]

Note: It is sufficient to prove for \(\text{supp } \alpha \subseteq (0, \infty) \) (in one chart)

\[
\int_D \alpha = \sum_i f_i(0, x_1^i, \ldots, x_n^i) dx_2 \ldots dx_n
\]

It suffices to prove for \(\alpha \in \Omega^{m-1}(\mathbb{R}^m) \) and \(D = \{ x \in \mathbb{R}^m \mid x \leq 0 \} \)

\[
\alpha = \sum_{i=1}^m f_i x_1 \wedge \ldots \wedge \overset{\wedge}{dx_i} \wedge \ldots \wedge dx_m
\]

\[
\int_D \alpha = \int_{\partial D} \sum_{i=1}^m \left(\text{comp. supp. } \right) f_i(0, x_1^i, \ldots, x_n^i) dx_2 \ldots dx_n
\]

Only 1 term contributes to \(\int_{\partial D} \alpha \)

\[
\int_{\partial D} \alpha = \int_{x_1 = 0} \sum_{i=1}^m f_i(0, x_1, \ldots, x_n) dx_2 \ldots dx_n
\]

Then \(\int D \alpha = \int_{x_1}^\infty \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f_i(x_1, \ldots, x_n) dx_1 \ldots dx_m = 0 \) if \(i > 1 \)

\[
\Rightarrow \int_D d\alpha = \int_{\partial D} \alpha = \int_{x_1}^\infty \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} f_i(0, x_2, \ldots, x_n) dx_2 \ldots dx_n
\]

Cor. For \(M \) w/o boundary, for \(\alpha \in \Omega^m(M) \)

\[
\int_D d\alpha = 0 \quad \text{iff } \text{of an exact form over } M \text{ w/o boundary.}
\]

Ex. \(\int_D df = 0 \) for closed pde \(f \).
Thus \(S^k \& M_{\text{o}} \) is orientable, \(\omega \equiv \omega^k_M \) closed.

\[
\omega = \frac{1}{k!} \sum_{\sigma} \text{sign} \sigma \prod_{i=1}^{k} dx_i
\]

Let \(F \in C^\infty (R \times S^k, M) \) smooth map, regarded as a family (deformation): \(F_t = F(t, \cdot) : S^k \to M \)

Then \(\int F_t^* \omega \) does not depend on \(t \).

Proof Consider \(D = [0, b] \times S^k \subset R \times S^k \), \(\partial D = S^k_0 \cup S^k_2 \)

Orientation of \(S^k_0 \) = orientation of \(S^k_2 = \) one of \(S^k_0 \) (ext. normal)

\[
0 = \int_D F^* \omega = \int_D F_t^* \omega = \int_{S^k_0} F_t^* \omega = \int_{S^k_2} F_t^* \omega = 2 \tag{3}
\]

Cor. If \(F \) shrinks \(S^k \) to a pt \((0, k+1)\), then \(\int F^* \omega = 0 \) \(\forall t \in [0, b] \).

Indeed \(F_t^* \omega = 0 \) for dim/degree reasons.

If \(\int d\omega \neq \int \omega \) one cannot deform smoothly \(S^k_1 \) to \(S^k_2 \) in \(M \).

\[
\int d\omega = \int d\Phi_1 = 2\pi \tag{4}
\]

\[
\int \omega = \int d\Phi_2 = 2\pi \tag{5}
\]

\[
\int_{S^k_1} \omega = \int_{S^k_2} \omega = 0 \tag{6}
\]

\[
\int_{S^k_2} \omega \int_{S^k_3} \omega = 0 \tag{7}
\]

\[
\omega = \frac{1}{2} \cot \theta \quad \Phi_1 = \frac{1}{2} \cot \theta
\]

\[
\Phi_2 = \frac{1}{3} \sin \theta
\]