MAT 367S - Midterm \#2, March 26, 2020 Solutions

Problem \#1:[5+3=8 points]

a) Find the integral $\int_{\gamma} \alpha$ of

$$
\alpha=e^{x+2 y}(d x+2 d y) \in \Omega^{1}\left(\mathbb{R}^{2}\right)
$$

along the path

$$
\gamma:[0,1] \rightarrow \mathbb{R}^{2}, \quad \gamma(t)=(-3 t, \cos \pi t) .
$$

b) Is α closed? exact? Explain briefly.

Solution: a)

$$
\alpha=e^{x+2 y}(d x+2 d y)=d\left(e^{x+2 y}\right) .
$$

So

$$
\int_{\gamma} \alpha=\int_{\gamma} d\left(e^{x+2 y}\right)=\left.e^{-3 t+2 \cos \pi t}\right|_{0} ^{1}=e^{-5}-e^{2} .
$$

b) The form α is exact, and hence it is closed.

Problem \#2: $[3+3+2=8$ points $]$

a) Show that

$$
\Phi_{t}(x, y)=\left(e^{-t} x, \ln \left(e^{y}+t\right)\right)
$$

is the flow of a vector field X on plane \mathbb{R}^{2}.
b) Find the vector field X on \mathbb{R}^{2} having the flow $\Phi_{t}(x, y)$ from part a).
c) Is this vector field complete? Explain briefly.

Solution: a) We have $\Phi_{0}(x)=\left(1 x, \ln \left(e^{y}+0\right)\right)=(x, y)$, i.e. $\Phi_{0}=i d$ and

$$
\begin{aligned}
& \Phi_{t_{2}} \circ \Phi_{t_{1}}(x, y)=\Phi_{t_{2}}\left(e^{t_{1}} x, \ln \left(e^{y}+t_{1}\right)\right)=\left(e^{t_{2}} e^{t_{1}} x, \ln \left(e^{\ln \left(e^{y}+t_{1}\right)}+t_{2}\right)\right)= \\
&=\left(e^{\left(t_{1}+t_{2}\right)} x, \ln \left(e^{y}+\left(t_{1}+t_{2}\right)\right)\right)=\Phi_{t_{1}+t_{2}}(x, y) .
\end{aligned}
$$

hence Φ_{t} is a flow.
b) $X:=\left.\frac{d}{d t}\right|_{t=0} \Phi_{t}(x, y)=\left.\left(-e^{-t} x, \frac{1}{e^{y}+t}\right)\right|_{t=0}=\left(-x, \frac{1}{e^{y}}\right)=\left(-x, e^{-y}\right)$.
c) The y-component $y(t)$ of the solution $(x(t), y(t))$ with initial condition $(x(0), y(0))=\left(x_{0}, y_{0}\right)$ is $y(t)=\ln \left(e^{y_{0}}+t\right)$ and it does not exist for $t<-e^{y_{0}}$. Hence the solution is not defined for all $t \in \mathbb{R}$, and the field X is incomplete.

Problem \#3: [4+4=8 points]
Consider the coordinate transformation, for $x>0, y>1$,

$$
(u, v)=F(x, y)=\left(x e^{y}, 2 x y\right)
$$

a) Express the differentials $d u, d v$ in terms of $d x$ and $d y$ (with coefficients that are functions of $x, y)$.
b) Express the coordinate vector fields $\frac{\partial}{\partial u}, \frac{\partial}{\partial v}$ in terms of $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$ (with coefficients that are functions of x, y).

Solution: a)

$$
\begin{aligned}
d u & =\frac{\partial u}{\partial x} d x+\frac{\partial u}{\partial y} d y=e^{y} d x+x e^{y} d y \\
d v & =\frac{\partial v}{\partial x} d x+\frac{\partial v}{\partial y} d y=2 y d x+2 x d y
\end{aligned}
$$

b)

$$
\begin{gathered}
\frac{\partial}{\partial x}=\frac{\partial u}{\partial x} \frac{\partial}{\partial u}+\frac{\partial v}{\partial x} \frac{\partial}{\partial v}=e^{y} \frac{\partial}{\partial u}+2 y \frac{\partial}{\partial v} \\
\frac{\partial}{\partial y}=\frac{\partial u}{\partial y} \frac{\partial}{\partial u}+\frac{\partial v}{\partial y} \frac{\partial}{\partial v}=x e^{y} \frac{\partial}{\partial u}+2 x \frac{\partial}{\partial v}
\end{gathered}
$$

Hence

$$
\begin{aligned}
x \frac{\partial}{\partial x}-\frac{\partial}{\partial y} & =2 x(y-1) \frac{\partial}{\partial v} \\
x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y} & =x(1-y) e^{y} \frac{\partial}{\partial u}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\frac{\partial}{\partial v} & =\frac{1}{2 x(y-1)}\left(x \frac{\partial}{\partial x}-\frac{\partial}{\partial y}\right) \\
\frac{\partial}{\partial u} & =\frac{1}{x(1-y) e^{y}}\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}\right)
\end{aligned}
$$

Problem $\# 4$: [4+4=8 points]

Compute the Lie brackets $[X, Y]$ and $[[X, Y], Y]$ of the following two vector fields on \mathbb{R}^{3}.

$$
X=x \frac{\partial}{\partial y}-z \frac{\partial}{\partial x}, \quad Y=x \frac{\partial}{\partial z}-y \frac{\partial}{\partial x}
$$

Solution:

$$
\begin{aligned}
{[X, Y] } & =y \frac{\partial}{\partial y}-z \frac{\partial}{\partial z} \\
{[[X, Y], Y] } & =x \frac{\partial}{\partial z}-y \frac{\partial}{\partial x}=Y .
\end{aligned}
$$

Problem \#5: [8 (+4 bonus) points]
a) [8 points] Let $S \subset M$ be a submanifold. A vector field $X \in \mathfrak{X}(M)$ is said to vanish along S if $X_{p}=0$ for all $p \in S$.
Show that if $X, Y \in \mathfrak{X}(M)$ are two vector fields such that X vanishes along S, and Y is tangent to S, then $[X, Y]$ vanishes along S.
b) (Bonus problem [4 points]) Let $X, Y \in \mathfrak{X}(M)$ and $f, g \in C^{\infty}(M)$. Express

$$
[f X, g Y] \in \mathfrak{X}(M)
$$

as linear combination of $X, Y,[X, Y]$ with coefficients in $C^{\infty}(M)$.

Solution:

a) Since both fields X and Y are tangent to S their commutator $[X, Y$] is also tangent to S and $\left.[X, Y]\right|_{S}=\left[\left.X\right|_{S},\left.Y\right|_{S}\right]=\left[0,\left.Y\right|_{S}\right]=0$.
b)

$$
\begin{aligned}
{[f X, g Y]=} & (f X)(g) Y+g[f X, Y]=f X(g) Y-g[Y, f X]= \\
& =f X(g) Y-g(Y(f) X+f[Y, X])=f X(g) Y-g Y(f) X+f g[X, Y]
\end{aligned}
$$

