MAT 367S – Midterm #2, March 26, 2020 Solutions

Problem #1:[5+3=8 points]

a) Find the integral $\int_\gamma \alpha$ of

$$\alpha = e^{x+2y}(dx+2dy) \in \Omega^1(\mathbb{R}^2)$$

along the path

$$\gamma \colon [0,1] \to \mathbb{R}^2, \ \gamma(t) = (-3t, \cos \pi t).$$

b) Is α closed? exact? Explain **briefly**.

Solution: a)

$$\alpha = e^{x+2y}(dx+2dy) = d(e^{x+2y}).$$

 So

$$\int_{\gamma} \alpha = \int_{\gamma} d(e^{x+2y}) = e^{-3t+2\cos\pi t}|_0^1 = e^{-5} - e^2.$$

b) The form α is exact, and hence it is closed.

Problem #2: [3+3+2=8 points]

a) Show that

$$\Phi_t\left(x,y\right) = \left(e^{-t}x,\,\ln(e^y+t)\right)$$

is the flow of a vector field X on plane \mathbb{R}^2 .

b) Find the vector field X on \mathbb{R}^2 having the flow $\Phi_t(x, y)$ from part a).

c) Is this vector field complete? Explain **briefly**.

Solution: a) We have
$$\Phi_0(x) = (1x, \ln(e^y + 0)) = (x, y)$$
, i.e. $\Phi_0 = id$ and

$$\Phi_{t_2} \circ \Phi_{t_1} \Big(x, y \Big) = \Phi_{t_2} \Big(e^{t_1} x, \ln \left(e^y + t_1 \right) \Big) = \Big(e^{t_2} e^{t_1} x, \ln \left(e^{\ln \left(e^y + t_1 \right)} + t_2 \right) \Big) = \\ = \Big(e^{(t_1 + t_2)} x, \ln \left(e^y + (t_1 + t_2) \right) \Big) = \Phi_{t_1 + t_2} \Big(x, y \Big).$$

hence Φ_t is a flow.

b)
$$X := \frac{d}{dt}|_{t=0} \Phi_t(x,y) = \left(-e^{-t}x, \frac{1}{e^y+t}\right)|_{t=0} = \left(-x, \frac{1}{e^y}\right) = \left(-x, e^{-y}\right).$$

c) The y-component y(t) of the solution (x(t), y(t)) with initial condition $(x(0), y(0)) = (x_0, y_0)$ is $y(t) = \ln(e^{y_0} + t)$ and it does not exist for $t < -e^{y_0}$. Hence the solution is not defined for all $t \in \mathbb{R}$, and the field X is incomplete.

Problem #3: [4+4=8 points]

Consider the coordinate transformation, for x > 0, y > 1,

$$(u,v) = F(x,y) = (xe^y, 2xy)$$

a) Express the differentials du, dv in terms of dx and dy (with coefficients that are functions of x, y).

b) Express the coordinate vector fields $\frac{\partial}{\partial u}$, $\frac{\partial}{\partial v}$ in terms of $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$ (with coefficients that are functions of x, y).

Solution: a)

$$du = \frac{\partial u}{\partial x}dx + \frac{\partial u}{\partial y}dy = e^y dx + xe^y dy$$

$$dv = \frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy = 2ydx + 2xdy$$

b)

$$\frac{\partial}{\partial x} = \frac{\partial u}{\partial x}\frac{\partial}{\partial u} + \frac{\partial v}{\partial x}\frac{\partial}{\partial v} = e^{y}\frac{\partial}{\partial u} + 2y\frac{\partial}{\partial v}$$
$$\frac{\partial}{\partial y} = \frac{\partial u}{\partial y}\frac{\partial}{\partial u} + \frac{\partial v}{\partial y}\frac{\partial}{\partial v} = xe^{y}\frac{\partial}{\partial u} + 2x\frac{\partial}{\partial v}$$

Hence

$$\begin{aligned} x\frac{\partial}{\partial x} - \frac{\partial}{\partial y} &= 2x(y-1)\frac{\partial}{\partial v} \\ x\frac{\partial}{\partial x} - y\frac{\partial}{\partial y} &= x(1-y)e^y\frac{\partial}{\partial u} \end{aligned}$$

and therefore

$$\frac{\partial}{\partial v} = \frac{1}{2x(y-1)} \left(x \frac{\partial}{\partial x} - \frac{\partial}{\partial y} \right)$$
$$\frac{\partial}{\partial u} = \frac{1}{x(1-y)e^y} \left(x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y} \right)$$

Problem #4: [4+4=8 points]

Compute the Lie brackets [X, Y] and [[X, Y], Y] of the following two vector fields on \mathbb{R}^3 .

$$X = x\frac{\partial}{\partial y} - z\frac{\partial}{\partial x}, \quad Y = x\frac{\partial}{\partial z} - y\frac{\partial}{\partial x}.$$

Solution:

$$\begin{split} [X,Y] &= y \frac{\partial}{\partial y} - z \frac{\partial}{\partial z}.\\ [[X,Y],Y] &= x \frac{\partial}{\partial z} - y \frac{\partial}{\partial x} = Y. \end{split}$$

Problem #5: [8 (+4 bonus) points]

a) [8 points] Let $S \subset M$ be a submanifold. A vector field $X \in \mathfrak{X}(M)$ is said to vanish along S if $X_p = 0$ for all $p \in S$.

Show that if $X, Y \in \mathfrak{X}(M)$ are two vector fields such that X vanishes along S, and Y is tangent to S, then [X, Y] vanishes along S.

b) (Bonus problem [4 points]) Let $X,Y\in\mathfrak{X}(M)$ and $f,g\in C^\infty(M).$ Express $[fX,gY]\in\mathfrak{X}(M)$

as linear combination of X, Y, [X, Y] with coefficients in $C^{\infty}(M)$.

Solution:

a) Since both fields X and Y are tangent to S their commutator [X, Y] is also tangent to S and $[X, Y]|_S = [X|_S, Y|_S] = [0, Y|_S] = 0$. b)

$$[fX,gY] = (fX)(g)Y + g[fX,Y] = fX(g)Y - g[Y,fX] = fX(g)Y - g(Y(f)X + f[Y,X]) = fX(g)Y - gY(f)X + fg[X,Y].$$