Problem #1:

a) Find the integral \(\int_{\gamma} \alpha \) of
\[\alpha = dz + ydx \in \Omega^1(\mathbb{R}^3) \]
along the path
\[\gamma: [0, 2\pi] \to \mathbb{R}^3, \quad \gamma(t) = (\cos t, \sin t, t^2). \]

b) Is \(\alpha \) closed? exact? Explain briefly.

Problem #2:

a) Show that the function
\[\Phi(t, x) = \left(3\sqrt{x} + t\right)^3, \]
is the flow \(\Phi_t(x) = \Phi(t, x) \) of a vector field on \(\{x | x \neq 0\} \subset \mathbb{R} \).

b) Find the vector field on \(\{x | x \neq 0\} \subset \mathbb{R} \) having the flow \(\Phi_t(x) \) from part a).

c) Is this vector field complete? Explain briefly.

Problem #3:

Consider the following coordinate transformation on \(\mathbb{R}^2 \),
\[u = -2x - 7y, \quad v = x + 5y. \]
Express the coordinate vector fields
\[\partial/\partial x, \partial/\partial y \]
for the \((x, y)\) coordinates in terms of the coordinate vector fields
\[\partial/\partial u, \partial/\partial v \]
for the \((u, v)\) coordinates.

Problem #4: Consider the following vector fields on \(\mathbb{R}^2 \setminus \{0\} \),
\[X = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y}, \quad Y = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}. \]
Find a 1-form \(\alpha \in \Omega^1(\mathbb{R}^2 \setminus \{0\}) \) such that
\[\alpha(X) = 0, \quad \alpha(Y) = -1. \]
Problem #5:

a) Compute the Lie brackets $[X,Y]$, $[[X,Y],Y]$, and $[[[X,Y],Y],Y]$ of the following two vector fields on \mathbb{R}^3.

$$X = \frac{\partial}{\partial z} + y^3 \frac{\partial}{\partial x}, \quad Y = \frac{\partial}{\partial y}.$$

b) Explain briefly if there can be a 2-dimensional submanifold $S \subset \mathbb{R}^3$ such that X, Y are everywhere tangent to S.
