MAT 367S - Mock Midterm Test \#2
 4:00-4:50 (+20min to upload your work), March 24, 2020

No tools allowed. The test will not be graded.

Problem \#1:

a) Find the integral $\int_{\gamma} \alpha$ of

$$
\alpha=\mathrm{d} z+y \mathrm{~d} x \in \Omega^{1}\left(\mathbb{R}^{3}\right)
$$

along the path

$$
\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{3}, \quad \gamma(t)=\left(\cos t, \sin t, t^{2}\right) .
$$

b) Is α closed? exact? Explain briefly.

Problem \#2:

a) Show that the function

$$
\Phi(t, x)=(\sqrt[3]{x}+t)^{3}
$$

is the flow $\Phi_{t}(x)=\Phi(t, x)$ of a vector field on $\{x \mid x \neq 0\} \subset \mathbb{R}$.
b) Find the vector field on $\{x \mid x \neq 0\} \subset \mathbb{R}$ having the flow $\Phi_{t}(x)$ from part a).
c) Is this vector field complete? Explain briefly.

Problem \#3:

Consider the following coordinate transformation on \mathbb{R}^{2},

$$
u=-2 x-7 y, \quad v=x+5 y
$$

Express the coordinate vector fields

$$
\partial / \partial x, \partial / \partial y
$$

for the (x, y) coordinates in terms of the coordinate vector fields

$$
\partial / \partial u, \partial / \partial v
$$

for the (u, v) coordinates.

Problem \#4: Consider the following vector fields on $\mathbb{R}^{2} \backslash\{0\}$,

$$
X=-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}, \quad Y=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} .
$$

Find a 1-form $\alpha \in \Omega^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)$ such that

$$
\alpha(X)=0, \quad \alpha(Y)=-1
$$

Problem \#5:

a) Compute the Lie brackets $[X, Y],[[X, Y], Y]$, and $[[[X, Y], Y], Y]$ of the following two vector fields on \mathbb{R}^{3}.

$$
X=\frac{\partial}{\partial z}+y^{3} \frac{\partial}{\partial x}, \quad Y=\frac{\partial}{\partial y} .
$$

b) Explain briefly if there can be a 2-dimensional submanifold $S \subset \mathbb{R}^{3}$ such that X, Y are everywhere tangent to S.

