MAT 367S - Midterm \#2, March 29, 2019 Solutions

Problem \#1:[5+1=6 points]

a) Find the integral $\int_{\gamma} \alpha$ of

$$
\alpha=\mathrm{d} z+y \mathrm{~d} x \in \Omega^{1}\left(\mathbb{R}^{3}\right)
$$

along the path

$$
\gamma:[0,2 \pi] \rightarrow \mathbb{R}^{3}, \quad \gamma(t)=\left(\cos t, \sin t, t^{2}\right) .
$$

b) Is α closed? exact? Explain briefly.

Solution: a)

$\int_{\gamma} \alpha=\int_{0}^{2 \pi} \mathrm{~d}\left(t^{2}\right)+\sin t \mathrm{~d}(\cos t)=\int_{0}^{2 \pi} \mathrm{~d}\left(t^{2}\right)-\sin ^{2} t \mathrm{~d} t=\left.t^{2}\right|_{0} ^{2 \pi}-\frac{1}{2} \cdot 2 \pi=(2 \pi)^{2}-\pi$.
b) $\mathrm{d} \alpha=\mathrm{d} y \wedge \mathrm{~d} x \neq 0$, so α is not closed, and hence not exact.

Problem \#2: [$3+2+2=7$ points]
a) Show that the function

$$
\Phi(t, x)=(\sqrt[3]{x}+t)^{3},
$$

is the flow $\Phi_{t}(x)=\Phi(t, x)$ of a vector field on $\{x \mid x \neq 0\} \subset \mathbb{R}$.
b) Find the vector field on $\{x \mid x \neq 0\} \subset \mathbb{R}$ having the flow $\Phi_{t}(x)$ from part a).
c) Is this vector field complete? Explain briefly.

Solution: a) We have $\Phi_{0}(x)=(\sqrt[3]{x}+0)^{3}=x$, i.e. $\Phi_{0}=i d$ and
$\Phi_{t_{2}} \circ \Phi_{t_{1}}(x)=\Phi_{t_{2}}\left(\left(\sqrt[3]{x}+t_{1}\right)^{3}\right)=\left(\sqrt[3]{\left(\sqrt[3]{x}+t_{1}\right)^{3}}+t_{2}\right)^{3}=\left(\sqrt[3]{x}+t_{1}+t_{2}\right)^{3}=\Phi_{t_{1}+t_{2}}(x)$
hence Φ_{t} is a flow.
b) $X:=\frac{d}{d t}\left|t=0 \Phi_{t}(x)=3(\sqrt[3]{x}+t)^{2}\right|_{t=0}=3 x^{3 / 2}$.
c) The solution $x(t)$ with initial condition $x(0)=x_{0}$ becomes zero at $t=-\sqrt[3]{x_{0}}$ and hence leaves the domain $\{x \mid x \neq 0\} \subset \mathbb{R}$. Hence it does not exists for all $t \in \mathbb{R}$.
(Actually, if we extend the domain to $x \in \mathbb{R}$, then the vector field $X(x)$ is not smooth at $x=0$, and $\dot{x}=3 x^{3 / 2}$ is an example of a differential equation with non-unique solutions: e.g. for $x(0)=0$ one has solutions $x(t)=0$ for all t and $x(t)=t^{3}$.)

Problem \#3: [6 points]
Consider the following coordinate transformation on \mathbb{R}^{2},

$$
u=-2 x-7 y, \quad v=x+5 y .
$$

Express the coordinate vector fields

$$
\partial / \partial x, \partial / \partial y
$$

for the (x, y) coordinates in terms of the coordinate vector fields

$$
\partial / \partial u, \partial / \partial v
$$

for the (u, v) coordinates.

Solution:

$$
\begin{aligned}
\frac{\partial}{\partial x} & =\frac{\partial u}{\partial x} \frac{\partial}{\partial u}+\frac{\partial v}{\partial x} \frac{\partial}{\partial v}=-2 \frac{\partial}{\partial u}+\frac{\partial}{\partial v} \\
\frac{\partial}{\partial y} & =\frac{\partial u}{\partial y} \frac{\partial}{\partial u}+\frac{\partial v}{\partial y} \frac{\partial}{\partial v}=-7 \frac{\partial}{\partial u}+5 \frac{\partial}{\partial v}
\end{aligned}
$$

Problem \#4: [6 points] Consider the following vector fields on $\mathbb{R}^{2} \backslash\{0\}$,

$$
X=-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}, \quad Y=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} .
$$

Find a 1 -form $\alpha \in \Omega^{1}\left(\mathbb{R}^{2} \backslash\{0\}\right)$ such that

$$
\alpha(X)=0, \quad \alpha(Y)=-1 .
$$

Solution:

Look for α in the form $\alpha=f \mathrm{~d} x+g \mathrm{~d} y$, with unknown functions f, g on $\mathbb{R}^{2} \backslash\{0\}$.
Then they satisfy the system of linear equations

$$
\begin{aligned}
& -y f+x g=0 \\
& x f+y g=-1
\end{aligned}
$$

Then e.g. by Cramer's rule $f=\frac{-x}{x^{2}+y^{2}}$ and $g=\frac{-y}{x^{2}+y^{2}}$, i.e.

$$
\alpha=\frac{-1}{x^{2}+y^{2}}(x \mathrm{~d} x+y \mathrm{~d} y) .
$$

Problem \#5: [4+3=7 points]
a) Compute the Lie brackets $[X, Y],[[X, Y], Y]$, and $[[[X, Y], Y], Y]$ of the following two vector fields on \mathbb{R}^{3}.

$$
X=\frac{\partial}{\partial z}+y^{3} \frac{\partial}{\partial x}, \quad Y=\frac{\partial}{\partial y}
$$

b) Explain briefly if there can be a 2-dimensional submanifold $S \subset \mathbb{R}^{3}$ such that X, Y are everywhere tangent to S.

Solution: a)

$$
[X, Y]=-3 y^{2} \frac{\partial}{\partial x}, \quad[[X, Y], Y]=6 y \frac{\partial}{\partial x}, \quad[[[X, Y], Y], Y]=-6 \frac{\partial}{\partial x}
$$

b) By contradiction: if there is such a submanifold S so that X and Y are tangent to it, then so are all their brackets. But the fields X, Y, and $Z=[[[X, Y], Y], Y]$ are linearly independent at all points of \mathbb{R}^{3}, hence such a surface cannot exist.

