Problem 1: [6 points] Let Φ be the diffeomorphism from $\mathbb{R}^2 \setminus \{0\}$ to itself, given by

$$\Phi(x, y) = (2x, \frac{1}{2}y).$$

Let \sim be equivalence relation generated by $p \sim \Phi(p)$, and let $M = \mathbb{R}^2 \setminus \{0\}/\sim$ be the quotient space, with quotient map

$$\pi : \mathbb{R}^2 \setminus \{0\} \to M.$$

Every open subset $V \subseteq \mathbb{R}^2 \setminus \{0\}$ for which the restriction $\pi|_V : V \to M$ is injective defines a chart (U, ϕ) for M, where

$$U = \pi(V), \quad \phi \circ \pi|_V = \text{id}_V.$$

One can verify (which I don’t ask you to do) that the collection of such charts defines an atlas on M; let \mathcal{A} be the maximal atlas containing all these charts.

(a) Show that every point $p \in \mathbb{R}^2 \setminus \{0\}$ has an open neighborhood V such that $\pi|_V : V \to M$ is injective.

(b) Give an example of inequivalent points $p_1, p_2 \in \mathbb{R}^2 \setminus \{0\}$ such that for **all** open subset $V_1, V_2 \subset \mathbb{R}^2 \setminus \{0\}$ with $p_1 \in V_1, p_2 \in V_2$, there exists $n \in \mathbb{N}$ such that

$$\Phi^n(V_1) \cap V_2 \neq \emptyset.$$

Justify your claim.

(c) Show that M with the atlas \mathcal{A} does *not* satisfy the Hausdorff property.

Remark: This illustrates how non-Hausdorff manifolds can arise ‘in nature’.

Problem 2: [6 points]

(a) Let

$$f : \mathbb{R}P^2 \to \text{Mat}_\mathbb{R}(3)$$

be the map taking a line ℓ in \mathbb{R}^3 to the matrix of orthogonal projection onto ℓ. Explain why this map is injective, describe its image, and give a formula for $P = f([x])$ for any given $[x] = (x^0 : x^1 : x^2)$.

(b) Let

$$g : \mathbb{R}P^2 \to \text{Mat}_\mathbb{R}(3)$$

be the map taking a line ℓ in \mathbb{R}^3 to the matrix of rotation by π around that line. Explain why this map is injective, describe its image, and give a formula for $Q = g([x])$, for example in terms of $P = f([x])$.

Reminders:

- A square matrix A is an *orthogonal projection* if $A^\top = A = A^2$. A square matrix A is a *rotation* if $A^\top = A^{-1}$ and $\det(A) = 1$.

Problem 3: [0+3+1 points]

a) A complex number $z = x + iy$ (here $i = \sqrt{-1}$ and x, y are real) defines a complex linear map

$$\mathbb{C} \to \mathbb{C}, \quad w \mapsto zw.$$

Identifying $\mathbb{C} = \mathbb{R}^2$, this can be viewed as a linear map $\mathbb{R}^2 \to \mathbb{R}^2$. What is the corresponding matrix? **Hint:** This was discussed in class.
b) Show that the map
\[\mathbb{C}P^1 \to \text{Gr}_\mathbb{R}(2, 4), \]
sending a complex line \(\ell \) in \(\mathbb{C}^2 \) to the subspace \(E \) which is just \(\ell \) itself regarded as a 2-dimensional real subspace of \(\mathbb{C}^2 = \mathbb{R}^4 \), is smooth. **Hint:** Use the standard charts, viewing the projective space as \(\text{Gr}_{\mathbb{C}}(1, 2) \), together with part a).

c) Indicate (together with an idea of proof, not giving details) how this construction generalizes to define a smooth map \(\text{Gr}_{\mathbb{C}}(k, n) \to \text{Gr}_{\mathbb{R}}(2k, 2n) \).

Problem 4: [4 points] Let \(M = \mathbb{R}P^3 \) with its standard atlas \((U_i, \phi_i)\) for \(0 \leq i \leq 3 \), as explained in class (see also lecture notes, Section 2.3.2).

a) Calculate the determinant of the Jacobian matrix of the transition functions
\[\phi_i \circ \phi_j^{-1} \]
for all \(0 \leq i < j \leq 3 \).

b) Use this result to prove that the modified coordinate maps
\[\psi_i = (-1)^i \phi_i : U_i \to \mathbb{R}^3 \]
define an **oriented** atlas for \(\mathbb{R}P^3 \).

c) Indicate (without giving detailed proofs) how this construction generalizes to \(\mathbb{R}P^n \) for \(n \) odd.

Problem 5: **Additional problem – will not be graded**
Let \(X \) be the set of all Canadian people. Decide whether the following relations (see Section 2.9.2) are transitive, reflexive, symmetric. Which of these relations are equivalence relations on \(X \)?

- \(x \sim y \) if and only if both \(x \) and \(y \) live in the same province or territory.
- \(x \sim y \) if and only if \(x \) and \(y \) are sisters, or are brothers.
- \(x \sim y \) if and only if \(x \) is a sister of \(y \).
- \(x \sim y \) if and only if \(x \) is an ancestor of \(y \).
- \(x \sim y \) if and only if \(x \) has the same last name as \(y \).

Problem 6: **Additional problem – will not be graded**
Construct a diffeomorphism \(\mathbb{C}P^1 \to S^2 \) in any of their atlases. Verify that the map
\[F(w_0 : w_1) = \frac{1}{|w_0|^2 + |w_1|^2} (2\text{Re}(w_1 \bar{w}_0), 2\text{Im}(w_1 \bar{w}_0), |w_0|^2 - |w_1|^2) \]
defines a diffeomorphism \(F : \mathbb{C}P^1 \to S^2 \). Find its inverse \(G : S^2 \to \mathbb{C}P^1 \).

Problem 7: **Additional problem – will not be graded**
1) Give an example of an invertible smooth map whose inverse is not smooth.
2) Write out in detail the construction of the ‘standard’ atlas for \(\mathbb{C}P^n \), parallel to our construction of the standard atlas for \(\mathbb{R}P^n \), and show that the transition maps are smooth.
3) Show that under the identification \(\mathbb{R}P^n = \text{Gr}(1, n + 1) \), the standard atlas for \(\mathbb{R}P^n \) is just the same as the standard atlas for \(\text{Gr}(1, n + 1) \).