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THE HELICITY UNIQUENESS CONJECTURE IN 3D

HYDRODYNAMICS

BORIS KHESIN, DANIEL PERALTA-SALAS, AND CHENG YANG

Abstract. We prove that the helicity is the only regular Casimir function for
the coadjoint action of the volume-preserving diffeomorphism group SDiff(M)
on smooth exact divergence-free vector fields on a closed three-dimensional
manifold M . More precisely, any regular C1 functional defined on the space
of C∞ (more generally, Ck, k ≥ 4) exact divergence-free vector fields and
invariant under arbitrary volume-preserving diffeomorphisms can be expressed
as a C1 function of the helicity. This gives a complete description of Casimirs
for adjoint and coadjoint actions of SDiff(M) in 3D and completes the proof of
Arnold-Khesin’s 1998 conjecture for a manifold M with trivial first homology
group. Our proofs make use of various tools from the theory of dynamical
systems, including normal forms for divergence-free vector fields, the Poincaré-
Birkhoff theorem, and a division lemma for vector fields with hyperbolic zeros.

1. Introduction

Let (M, g) be a closed (i.e., compact and without boundary) three-dimensional
Riemannian manifold with volume form dμ. The motion of an inviscid and incom-
pressible fluid filling M is governed by the Euler equations:

(1)

{
∂tv +∇vv = −∇p ,
div v = 0 ,

where ∇vv is the Riemannian covariant derivative of the field v along itself, div is
the divergence operator, and the pressure function p is uniquely determined up to
an additive constant.

In the 1960’s, Moreau [13] and Moffatt [14] discovered a conserved quantity for
the Euler equations, the helicity, which is a functional defined for the vorticity
vector field ω := curl v as follows:

H(ω) :=

∫
M

ω · curl−1ω dμ =

∫
M

ω · v dμ .

Here the dot · denotes the (pointwise) Riemannian inner product of two fields.
The operator curl is defined via differential forms as icurl vdμ = dv�, where v� is the
metric-dual 1-form of v. The origin of the helicity conservation is Kelvin’s law of the
vorticity transport by the flow. Actually, it is easy to check that H(Φ∗ω) = H(ω)
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for any volume-preserving diffeomorphism Φ : M → M , i.e., the helicity is invariant
under arbitrary volume-preserving transformations, rather than under the specific
family of diffeomorphisms defined by a fluid flow. In geometric terms, this makes the
helicity a Casimir functional for the coadjoint action of the group of C∞ volume-
preserving diffeomorphisms on exact divergence-free vector fields. Note that the
helicity H is defined only on exact divergence-free vector fields, since it requires
finding the field-potential, curl−1.

In the 1998 monograph [4, Section I.9] it was conjectured that the helicity is
the only Casimir function for the group SDiff(M) of C∞ volume-preserving dif-
feomorphisms of a closed 3D manifold M . In this paper we prove this conjecture
for manifolds M with trivial first homology group (where all divergence-free vector
fields are exact), and under some natural regularity assumptions on the invari-
ants. Furthermore, we establish similar results for the adjoint action of the group
SDiff(M) and for Ck-fields with k ≥ 4. The case of M with H1(M,R) �= 0 involves
such an invariant of the adjoint action as the rotation number of a vector field,
see [3], and we shall describe its interrelation with helicity.

To formulate the main result one needs the notion of regular integral invariants
(see Definition 2.2), which, roughly speaking, means C1 functionals on the space
Xk

ex of exact Ck vector fields that are invariant under volume-preserving diffeo-
morphisms and whose (Fréchet) derivative is an integral operator with continuous
kernel; see [7].

Theorem 1.1. Let F be a regular integral invariant on the space Xk
ex (endowed

with the Whitney Ck topology). Then F is a function of the helicity provided that
k ≥ 4 (including the case k = ∞), i.e. there exists a C1 function f : R → R such
that F(w) = f(H(w)) for any w ∈ Xk

ex.

Corollary 1.2. The helicity H is the only regular Casimir (i.e. coadjoint invariant)
for the group SDiff(M) of C∞ volume-preserving diffeomorphisms of a closed 3D
manifold M (i.e., the conjecture of [4] holds) provided that H1(M,R) = 0.

Concerning Corollary 1.2, we recall that when H1(M) = 0, the dual space to
the Lie algebra of the group SDiff(M) can be identified with the space of C∞ exact
divergence-free vector fields endowed with the Whitney C∞ topology (see Section 4
for details).

An analogous result for k = 1, i.e., for functionals acting on X1
ex, was proved

in [7] (see also [11,12] for the case of manifolds with boundary and divergence-free
vector fields admitting a global cross section). However, none of the results for Ck

implies the results for other k. The use of the space X1
ex (endowed with the Whitney

C1 topology) is key in the proof of [7], which is based on the existence of a residual
subset of vector fields with special dynamical properties. Indeed, the strategy for
C1-fields makes use of a theorem by M. Bessa [6] showing that there exists a dense
set of vector fields in X1

ex that are topologically transitive; such a dense set of fields
with a dense orbit cannot exist when one considers exact divergence-free vector
fields of class C4 or higher, as a consequence of the KAM theorem.

For the proof of Theorem 1.1 for Ck with k ≥ 4 we use different (and somewhat
more elementary) tools from the theory of dynamical systems, including normal
forms for divergence-free vector fields, the Poincaré-Birkhoff theorem, and a division
lemma for vector fields with hyperbolic zeros. The assumption k ≥ 4 is due to the
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use of Sard’s theorem, which requires sufficiently high regularity of the functions
under consideration. In particular, it cannot be applied in the C1 setting, where the
corresponding functions are only C0. (Also note that although any C1-functional
acting on X1

ex can also be evaluated at elements of Xk
ex, k ≥ 2, the kernel of the

derivative of such a functional on Xk
ex maps Ck vector fields into X1

ex only, and not
into Xk

ex, so the second assumption in Definition 2.2 below would not be fulfilled.)
The cases with k = 2 or 3 remain open.

Given a divergence-free vector field v on M one can define its rotation class
λ(v) ∈ H1(M,R), see [3] and Section 4. Namely, for a three-dimensional manifold
one can consider the cohomology class of the closed 2-form ivdμ in H2(M,R), which
is Poincaré isomorphic to H1(M,R).

Corollary 1.3. The helicity H is the only regular invariant of the adjoint action
for the group SDiff(M) on the space Xk

ex (k ≥ 4) of exact divergence-free vector
fields. For a manifold with nontrivial homology H1(M) �= 0 the rotation class
λ(v) ∈ H1(M) of a vector field v is a regular invariant of the adjoint action of the
identity connected component of the group SDiff(M).

The rotation class λ defines a natural projection λ : Xk → H1(M), where Xk
ex =

λ−1(0). So intuitively, the helicity (well-defined on Xk
ex) and the rotation class

together constitute the set of regular invariants of the adjoint action. However for
fields with nontrivial rotation class only relative helicity (of one field with respect
to another) is well defined, see [4] for details.

Remark 1.4. Let ϕt be the volume-preserving flow defined by a divergence-free
vector field v. We observe that the flux defined by ϕt, cf. [5, Chapter 3.1 ], coincides
with the rotation class of v. More precisely,

H2(M,R) � Flux(ϕt) :=

∫ 1

0

[ivdμ]dt = [ivdμ] = λ(v) ,

where we have used that v is an autonomous vector field (so it does not depend on
the parameter t). The rotation class can then be understood as the flux homomor-
phism acting on flows of divergence-free vector fields, see [5] for details.

This paper is organized as follows. In Section 2 we introduce the definition
of regular integral invariants and prove the main theorem modulo Proposition 2.5.
This proposition is proved in Section 3, thus completing the proof of the main result.
In Section 4 we prove the corollaries and discuss in more detail the rotation class
and the setting of adjoint and coadjoint actions on exact and non-exact divergence-
free vector fields. Finally, in Section 5 we recall the geometric formulations of ideal
hydrodynamics and magnetohydrodynamics, and explain how the previous results
extend to the latter setting.

2. Regular integral invariants and proof of the main theorem

Consider the space Xk
ex, k ∈ {1, 2, · · · ,∞} of exact divergence-free vector fields

on a three-dimensional Riemannian manifold M . (The notation Xex ≡ X∞
ex stands

for k = ∞.) Recall that a divergence-free field w is exact if it is the curl of another
vector field, or, equivalently, if iwdμ is an exact 2-form on M . The reason to
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consider the space Xk
ex is that the curl operator on exact fields has a well-defined

inverse curl−1 : Xk
ex → Xk

ex. In this context, one can define the helicity of an exact
field as follows:

Definition 2.1. The helicity is the following quadratic form on w ∈ Xk
ex:

H(w) :=

∫
M

w · curl−1w dμ .

It is well known [4] that the helicity is invariant under the action of the group
SDiff(M) of (smooth) volume-preserving diffeomorphisms of the manifold M , i.e.
the helicity is a Casimir function of the group SDiff(M). For now we need its
infinitesimal invariance with respect to the action by a Lie derivative (or a Lie
bracket) Lv : Xex → Xex, where w 
→ [w, v] for any divergence-free vector field v.
The fact that Xex is dense in Xk

ex allows us to consider the Lv action by smooth
fields v on Xk

ex; we shall use this property in what follows without further mention.

Definition 2.2 ([7]). Let F : Xk
ex → R be a C1 functional. We say that F is a

regular integral invariant if:

(1) It is invariant under the action of the volume-preserving diffeomorphism
group SDiff(M), i.e., F(w) = F(Φ∗w) for any Φ ∈ SDiff(M).

(2) At any point w ∈ Xk
ex, the (Fréchet) derivative of F is an integral operator

with continuous kernel, that is,

(2) (DF)w(u) =

∫
M

K(w) · u dμ,

for any u ∈ Xk
ex, where K : Xk

ex → Xk
ex is a continuous map (with respect to

the Whitney Ck topology). Here the dot stands for the Riemannian inner
product of two vector fields on M .

Remark 2.3. The regular integral invariant F : Xk
ex → R is C1 (or continuously

differentiable) in the Fréchet sense, i.e., the Fréchet derivative DF is a continuous
map. Depending on how we identify the dual space X∗

ex with Xex, we obtain
different regularities for the derivative DF . Indeed, with the identification used in
the context of the coadjoint action, introduced in Section 4.2, cf. Equation (7), we
have that (DF)w = curl K(w), so DF : Xk

ex → Xk−1
ex . On the other hand, taking

the pairing between two exact fields to be the standard L2 product, we have that
(DF)w = K(w), and hence DF : Xk

ex → Xk
ex. However, this distinction will not be

important in what follows because we shall not work with DF , but directly with
the kernel K.

It is easy to check that the helicity H is a regular integral invariant (for any
k ≥ 1) with kernel

(3) K(w) = 2 curl−1w .

Note that in the case when the manifold M has trivial homology H1(M) = 0,
any divergence-free vector field is exact. Accordingly, in this case regular integral
invariants on the space of smooth fields Xex and regular Casimir functions of the
Lie group SDiff(M) are the same (cf. Section 4 for a proof).
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Proof of the main theorem. The proof of Theorem 1.1 follows the strategy
of [7], while the implementation turns out to be quite different in view of the
different regularity of the vector fields.

Proposition 2.4. For a regular invariant F with kernel K on the space Xk
ex,

k ≥ 1 the kernel satisfies the following property: for any w ∈ Xk
ex there exists a Ck

function Jw : M → R (depending on w) such that

(4) curlK(w)× w = ∇Jw .

Proof. By differentiating F((φt)∗(w)) = F(w) at t = 0 for a family of diffeomor-
phisms φt we obtain after certain transformations

0 =
d

dt
F((φt)∗(w))|t=0 =

∫
M

K(w) · [w, v] dμ = −
∫
M

v · (curlK(w)× w) dμ

for any divergence-free velocity field v := dφt/dt(0) ∈ X(M). (One uses the relation
[w, v] = curl (v×w) for divergence-free vector fields.) Due to arbitrariness of v this
implies that the vector field curlK(w) × w is L2-orthogonal to all divergence-free
vector fields on M , and hence it is a gradient field. �

It turns out that for sufficiently smooth w one can prove a stronger result:

Proposition 2.5. For the kernel K of a regular invariant F on the space Xk
ex,

k ≥ 4, for any w ∈ Xk
ex one has

curlK(w)× w = 0 .

We shall prove this key proposition in the next section. For now we assume it is
true and continue with the proof of Theorem 1.1.

The equation curlK(w) × w = 0 implies that there exists a function g ∈
Ck−1(M\w−1(0)) defined in the complement of the zero set of w, such that

curlK(w) = g w, with g :=
w · curlK(w)

|w|2 .

Consider the set R of exact divergence-free vector fields w ∈ Xk
ex, whose zeros are

hyperbolic (and hence isolated, so there are finitely many of them). We will call
vector fields in R hyperbolic. A standard transversality argument (see e.g. [16,
Chapter 2.3]) implies that R is an open and dense subset of Xk

ex. Take a vector
field w0 ∈ R ⊂ Xk

ex.

Proposition 2.6. The function g0(x) corresponding to a hyperbolic vector field
w0 ∈ R ⊂ Xk

ex can be extended to the whole manifold M as a Ck−2 function, i.e.
for any w0 ∈ R there exists a function g0 ∈ Ck−1(M\w−1

0 (0))
⋂
Ck−2(M) such

that curlK(w0) = g0(x)w0.

Indeed, the equation curlK(w0) × w0 = 0 can be equivalently written as
icurlK(w0)iw0

dμ = 0. This implies collinearity of the vector fields curlK(w0) and

w0, and hence the existence of the required Ck−1 function g0 away from the zero
set of w0. Furthermore, the set w−1

0 (0) consists of finitely many points, which are
hyperbolic zeros of the field w0. Then Proposition 2.6 immediately follows from
the following version of Hadamard’s division lemma, applied in a neighborhood of
each zero of w0, which allows one to extend the function g0 to a Ck−2-function on
the entire M . The statement of this division lemma is local and can be formulated
in local coordinates (xi) in a neighborhood of the origin of Rn.
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Lemma 2.7. Let v =
∑

αi∂xi
and w =

∑
βi∂xi

be two Cl vector fields defined in
a neighborhood V of 0 ∈ R

n, and dμ a volume form on R
n. Assume that 0 is a

hyperbolic zero of w. Then, if iviwdμ = 0 in V , there exists a function h ∈ Cl−1(V ),
such that αi = h(x)βi, for all i = 1, . . . , n.

Proof. This is a finitely-smooth version of the theorem in [15] on zeros of differen-
tial forms, which is also a version of Hadamard’s lemma. Due to the assumption
iviwdμ = 0, these two fields are collinear outside of the origin and there exists a
function h ∈ Cl(V \ {0}), such that αi = h(x)βi, for all i = 1, . . . , n and x �= 0.

Since the field w has a hyperbolic singularity at 0, one can use the functions βi

as local coordinates x̃i near the origin; any function in the new coordinate system
will be denoted with a “tilde”. Since the collinearity assumption implies that v
vanishes at the origin (otherwise the zero of w cannot be hyperbolic, this follows

from a simple flow box argument), then α̃i = 0 for x̃i = 0. So one has α̃i = h̃i(x̃)x̃i

by the classical Hadamard lemma, while the collinearity condition implies that
h̃i = h̃j = h̃ in V \{0}. In the whole of V the smoothness of h is less by 1 than that

of α̃i, which is shown by a standard argument: in a convex neighborhood Ṽ ⊂ V
of the origin (in new coordinates) we can express the components α̃i = h̃(x̃)x̃i of
the vector field v as follows:

α̃i(x̃) =

∫ 1

0

d

dt
α̃i(x̃1, · · · , tx̃i, · · · , x̃n) dt

=

(∫ 1

0

∂iα̃i(x̃1, · · · , tx̃i, · · · , x̃n) dt

)
x̃i = h̃(x̃) x̃i ,

where h̃(x̃) :=
∫ 1

0
∂iα̃i(x̃1, · · · , tx̃i, · · · , x̃n) dt. Since α̃i ∈ Cl(Ṽ ), one obtains that

h̃ ∈ Cl−1(Ṽ ) and therefore h = h̃ ◦ β ∈ Cl−1(V ), where β = (β1, β2, · · · , βn). �

Now, according to Proposition 2.6, we have the collinearity of the fields curlK(w0)
and w0. This can be used to show that the derivatives of the functional F and the
helicity are proportional:

Proposition 2.8. For a regular invariant functional F on Xk
ex, there exists a

continuous functional C : Xk
ex\{0} → R such that

(DF)w = C(w) (DH)w ,

for all w ∈ Xk
ex\{0}.

Proof. Since 0 = div curlK(w0) = ∇g0 · w0, we have that the function g0 is a
Ck−2 first integral of the vector field w0 ∈ R (more precisely, g0 ∈ Ck−1(M\w−1

0 (0))⋂
Ck−2(M)). The zero set of w0 consists of finitely many points that we denote by

{p1, p2, . . . , pN} ⊂ M . Take the values g0(pi) = ci, and a point p ∈ M with g0(p) �=
ci for all i. Since g0 is Ck−1 in the complement of the finite set {p1, p2, . . . , pN},
Sard’s theorem implies that one can safely assume that g0(p) is a regular value.
Then it follows from Lemma 3.1 (see Section 3), Thom’s isotopy theorem and the
compactness of the manifold that there is a domain U containing p which is trivially
fibred by components of the level sets of g0, that are invariant tori of w0.

Now using Lemma 3.2 in Section 3, and arguing exactly as in the proof of Propo-
sition 2.5, we conclude that g0 must be a constant for any w0 ∈ R, i.e., one has
that curlK(w0) = 2 C(w0)w0 for all w0 ∈ R, where C(w0) is a constant on M that
only depends on the field w0. The continuity of the kernel K (which implies the
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continuity of the function g on Xk
ex), and the fact that g is a constant on M (that

depends on w) for a dense subset R of Xk
ex, imply that g must also be a constant

(depending on w) for all w ∈ Xk
ex\{0}.

Summarizing, we have proved that there exists a continuous functional C :
Xk

ex\{0} → R such that the derivative of F reads as

(DF)w(u) =

∫
M

K(w) · u dμ =

∫
M

2 C(w) curl−1w · u dμ

for any u ∈ Xk
ex and w ∈ Xk

ex\{0}. Noticing that the derivative of the helicity is

given by (DH)w(u) = 2
∫
M

curl−1w · u dμ, we obtain that

(DF)w = C(w) (DH)w ,

for all w ∈ Xk
ex\{0}. �

Now, since the differentials of the functional F and the helicity H are propor-
tional by Proposition 2.8 at each point of the space Xk

ex\{0}, the main theorem
will follow from the path-connectedness of the level sets of H, which is established
in the following proposition. This result was first proved in [7]. For the sake of
completeness, here we give a simpler and more transparent proof.

Proposition 2.9 ([7]). The level sets of the helicity H−1(c) are path-connected
subsets of Xk

ex \ {0}.

Proof. Let w1 and w2 be two exact divergence-free vector fields with the same
helicity, which we first assume to be nonzero, i.e.

H(w1) = H(w2) = c �= 0 .

In order to prove the connectedness of the c-level, we introduce an auxiliary vector
field β̄ ∈ Xk

ex with the same helicity c, which can be connected with each w1 and
w2. The only ingredient we need in the proof is the property that the curl operator
acting on the space Xk

ex of exact fields has infinitely many positive and negative
eigenvalues, which implies that the positive and negative subspaces of the helicity
quadratic form H(w) on Xk

ex are infinite-dimensional.
Assume that c > 0. Consider the subspace S ⊂ Xk

ex of vector fields orthogonal
to the two vector fields w1, w2 with respect to the helicity quadratic form H, that
is

S := {u ∈ X
k
ex(M) :

∫
M

u · curl−1w1 dμ =

∫
M

u · curl−1w2 dμ = 0} .

This space has codimension ≤ 2 and hence the restriction of the helicity H to this
subspace is still sign-indefinite. Hence, one can choose a vector field β ∈ S such
that H(β) = 1 (for c < 0 one needs to choose H(β) = −1).

Now define a family of vector fields wt := tw1+f(t)β for t ∈ [0, 1], and choose an
appropriate function f(t) so that the condition H(wt) = c holds for all t. Namely,

H(wt) = H
(
tw1 + f(t)β

)
= t2H(w1) + f(t)2H(β) = t2c+ f(t)2 ,

where we have used thatH(w1) = c,
∫
M

β ·curl−1w1dμ =
∫
M

w1 ·curl−1β dμ = 0 and

H(β) = 1. Then, taking f(t) :=
√
(1− t2)c for t ∈ [0, 1] we obtain a continuous

family wt of fields in Xk
ex that have constant helicity c and connect β̄ :=

√
cβ

and w1. In the same way one can connect the fields w2 and β̄ for t ∈ [−1, 0].
The connecting path can be smoothened out by adjusting this construction. This
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proves the path-connectedness of the level sets of the helicity for c > 0; a similar
construction works for c < 0.

The case of c = 0 is analogous; take a (non-zero) field β with H(β) = 0 and
the family wt = tw1 + (1 − t)β. Then H(wt) = 0 and this family provides the
connectedness of the zero level set of the helicity, as required. �

We are now ready to finish the proof of Theorem 1.1.

Proof. First, we recall that we showed in Proposition 2.8 that the derivative of the
functional F satisfies

(5) (DF)w = C(w) (DH)w

for all w ∈ Xk
ex\{0} and some continuous functional C(w). Let us take any two

exact vector fields on the level set {H = c} of the helicity, and connect them by
a continuous path wt ∈ Xk

ex\{0} (cf. Proposition 2.9) with constant helicity, i.e.
H(wt) = c. The derivative of F along this path is given by

(DF)wt
(ẇt) = C(wt)(DH)wt

(ẇt) = 0 ,

where ẇt is the tangent vector along the path for almost all t (actually, one can
safely assume that the path is smooth in t). This implies that F is also constant
on each level set of H. Accordingly, there exists a function f : R → R which
assigns a value of F to each value of the helicity, i.e., F(w) = f(H(w)) for all
w ∈ Xk

ex\{0}. To include the case w = 0, we observe that F is constant on the level
set H−1(0)\{0}, so the continuity of the functional F in Xk

ex implies that it takes
the same constant value on the whole level set H−1(0), and hence the property
F(w) = f(H(w)) holds for all w ∈ Xk

ex. Additionally, f is of class C1 since F itself
is a C1 functional. This completes the proof of Theorem 1.1. �

3. Properties of the invariant kernel

The goal of this section is to prove Proposition 2.5. First, notice that 0 =
w · (curlK(w)×w) = w ·∇J , and hence J is a first integral of w. By the continuity
of the kernel K, Proposition 2.5 follows if we show that J is a constant (a trivial
first integral) on the manifold M for a residual (and hence dense) set of vector fields
w ∈ Xk

ex.
To this end, consider the set R of exact divergence-free vector fields w ∈ Xk

ex,
whose zeros are hyperbolic (and hence isolated). Each vector field w ∈ R has finitely
many zeros. This set was already introduced after the statement of Proposition 2.5,
where it was pointed out that R is an open and dense set of Xk

ex. The proof of
Proposition 2.5 makes use of the following instrumental lemma.

Lemma 3.1. If w ∈ R and P is a first integral of w of class Ck−1, k ≥ 4, then
any component of a regular level set of P is diffeomorphic to the torus T

2.

Proof. By the assumption k ≥ 4, Sard’s theorem implies that most of the values
of the first integral P are regular. Let c ∈ R be a regular value, then a connected
component Σc of the level set P

−1(c) is an oriented compact surface in M . Assume
that Σc is diffeomorphic to a surface of genus ν �= 1, i.e., the surface is not a
torus. The Poincaré-Hopf theorem easily implies that there exists a point pc ∈ Σc

such that w(pc) = 0 (and the index of w at pc is nonzero). It follows from the
compactness of the manifold that any value c′ ∈ (c − δ, c + δ), δ small enough, is
regular as well. Moreover, Thom’s isotopy theorem [1] implies that the level set
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P−1(c′) is isotopic to P−1(c), and therefore there is a neighborhood of Σc that is
saturated by components Σc′ of the level sets of P isotopic to Σc. Since on each
surface Σc′ , c

′ ∈ (c−δ, c+δ), the field w vanishes at a point pc′ , we conclude that w
has infinitely many zeros on M (in fact, a continuous arc of zeros). This contradicts
the assumption that w ∈ R, and therefore the genus of any component of a regular
level set must be 1, i.e., it is diffeomorphic to a torus. �

Take now a vector field w0 ∈ R ⊂ Xk
ex, and assume that the corresponding Ck

function J0 defined by Equation (4) is not a constant. Let c ∈ R be a regular
value of J0 (which exists by Sard’s theorem). By Lemma 3.1, all the components of
J−1
0 (c) are diffeomorphic to a torus; in fact, there exists a domain U ⊂ M which is

trivially fibred by toroidal components of the level sets of J0 (which are invariant
tori of w0), so in particular U ∼= T

2 × (0, 1). The following lemma shows that an
arbitrarily small perturbation can destroy this trivial fibration of invariant tori.

Lemma 3.2. For any ε > 0, there exists a vector field w ∈ Xk
ex such that ‖w −

w0‖Ck < ε, w = w0 on M\U , and w does not admit a trivial fibration of invariant
tori on U .

Proof. The main idea of the proof is the following two-step procedure. First, we
show that arbitrarily close to w0 there is a field w1 with a family of invariant
tori, such that the winding number of trajectories on tori changes nondegenerately
across the family. After that, by choosing an invariant torus with a rational winding
number p/q (which exists due to this nondegeneracy), we show that a generic
perturbation of such a field w1 leads to a field whose Poincaré return map has
at least q hyperbolic saddles, and hence does not admit a fibration into invariant
surfaces.

In more detail, by assumption, the domain U ⊂ M is diffeomorphic to T
2×(0, 1)

and each torus T2×{r}, r ∈ (0, 1), is invariant under the flow of w0. Introduce the
field ξ := ∇J0/(∇J0)

2. It is easy to check that the field w0|Tr
preserves the Ck−1

area form

(6) dμ2 := iξ dμ
∣∣∣
Tr

,

since Tr := T
2 × {r} corresponds to a regular level set of J0|U .

Let us introduce coordinates (θ1, θ2, r) parameterizing U , where (θ1, θ2) ∈ T
2 =

(R/2πZ)2 and r ∈ (0, 1). Since w0 preserves the area form dμ2 on each torus Tr,
Sternberg’s theorem [18] implies that the angular coordinates can be chosen in such
a way that the vector field w0|U in these coordinates reads as:

w0 = F (θ1, θ2, r)
(
Θ1(r)∂θ1 +Θ2(r)∂θ2

)
,

where Θ1(r), Θ2(r) are Ck functions, and F is a nonvanishing Ck−1 function.
Let us now perturb w0 to obtain a vector field w1 ∈ Xk

ex such that w1 = w0 on
M\U , ‖w1 − w0‖Ck < δ for some δ that will be fixed later, and on U there are
coordinates (that we still denote by (θ1, θ2, r)) such that

w1 = F̃ (θ1, θ2, r)
(
Θ̃1(r)∂θ1 + Θ̃2(r)∂θ2

)
,

where the Ck−1 function F̃ does not vanish on U , and the Ck functions Θ̃1, Θ̃2 on

(0, 1) are such that Θ̃2 has finitely many zeros and the ratio Φ(r) := Θ̃1/Θ̃2 is not
identically constant. To prove that such a perturbation exists, it is enough to take
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a Ck vector field Q that is zero on M\U , and on U is given in (θ1, θ2, r)-coordinates
by

Q|U :=
1

h(θ1, θ2, r)

(
f1(r)∂θ1 + f2(r)∂θ2

)
,

where h is the function that appears in the volume form when written in local
coordinates, i.e. dμ = h dθ1 ∧ dθ2 ∧ dr, and f1, f2 are Ck functions that are 0
in a neighborhood of r = 0 and r = 1, and ‖f1‖Ck < Cδ, ‖f2‖Ck < Cδ. It
is straightforward to check that the field Q is divergence-free with respect to the
volume dμ, and it is exact because iQdμ = f1(r)dθ2 ∧ dr− f2(r)dθ1 ∧ dr is an exact
2-form on U , while iQdμ = 0 on M\U , so the field Q belongs to the space Xk

ex.
Defining w1 := w0+Q, a generic choice of the functions f1 and f2 gives the desired
properties for w1.

The properties above allow us to take an interval (a, b) ⊂ (0, 1) where Θ̃2 does

not vanish and
∣∣∣ d
drΦ(r)

∣∣∣ > 0. The Poincaré return map of the vector field w1 at

the cross section S
1 × {θ2 = 0} × (a, b) ⊂ U is well defined and given by

Π(θ1, r) =
(
θ1 + 2πΦ(r), r

)
.

This is a Ck diffeomorphism of the annulus S1×(a, b) that preserves an area form dσ
(which in these coordinates takes the form f(r)dθ1 ∧ dr for some positive function
f , but we will not use this specific form in what follows). Moreover, it satisfies the
twist condition: ∣∣∣ d

dr

(
2πΦ(r)

)∣∣∣ > 0 ,

where Φ(r) = Θ̃1/Θ̃2.
Let c ∈ (a, b) be a value of the r-coordinate such that 2πΦ(c) = p/q for some

coprime natural numbers p and q. The circle {r = c} is then formed by fixed points
of the iterated map Πq. The twist assumption implies that on the invariant circles
{r < c} and {r > c} the map Πq rotates in opposite directions. Take now a Ck

diffeomorphism of the annulus Πδ : S1 × (a, b) → S
1 × (a, b) which is Cδ-close to Π,

i.e. ‖Πδ −Π‖Ck < Cδ, preserves the area form dσ, and Πδ = Π in a neighborhood
of S1×{a} and S

1×{b}. The Poincaré-Birkhoff theorem [8, Section 4.8] shows that
a generic perturbation Πq

δ has at least q fixed points which are hyperbolic saddles
and are Cδ close to the circle {r = c}. These fixed points correspond to hyperbolic
q-periodic points of the map Πδ that bifurcate from the resonant circle {r = c} as
δ → 0.

To conclude the proof of the lemma, we now take the suspension of the diffeo-
morphism Πδ along the θ2-direction to obtain a Ck vector field w2 in the do-
main V := T

2 × (a, b) ⊂ U whose Poincaré return map at the cross section
S
1 × {θ2 = 0} × (a, b) is precisely Πδ. Ref. [19] shows that this suspension can

be taken in such a way that w2 is divergence-free with respect to the volume dμ,
w2 = w1 in a neighborhood of ∂V , and ‖w2 −w1‖Ck < Cδ. We can then define the
vector field w on M as

w :=

{
w2 in V,
w1 in M\V .

It is obvious that w is Ck, divergence-free, and ‖w−w0‖Ck < ε by taking δ = ε/C.
Moreover, we claim that it is exact. Indeed, since w1 is exact, it is enough to show
that the divergence-free field R := w − w1 is also exact. This follows from the fact
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that R is supported on V = T
2 × (a, b), which implies that

∫
T2×{r} iRdμ = 0 for all

r ∈ (a, b); since any surface T2×{·} is a generator of the second homology group of
V , we infer from De Rham’s theorem that the closed 2-form iRdμ is exact. Finally,
notice that the properties of the map Πδ proved above imply that w has (at least) a
hyperbolic periodic orbit in the domain V ⊂ U ⊂ M , thus implying that w cannot
admit a trivial fibration by invariant tori on U . �

We are now ready to prove Proposition 2.5. Take the vector field w0 ∈ R ⊂ Xk
ex

introduced before the statement of Lemma 3.2 that satisfies Equation (4) with some
non-constant Ck function J0. As discussed above, there is a domain U ⊂ M which
is trivially fibred by toroidal components of the level sets of J0 (which are invariant
tori of w0). For any w ∈ Xk

ex as in the statement of Lemma 3.2, which is ε-close
to w0, that is ‖w−w0‖Ck < ε, the function J defined by Equation (4) satisfies the
estimate:

‖∇(J − J0)‖Ck−1 = ‖curlK(w)× w − curlK(w0)× w0‖Ck−1 < C‖w − w0‖Ck ,

where the constant C depends only on w0. Here we have used that the kernel
K : Xk

ex → Xk
ex is continuous with respect to the Ck Whitney topology. Since the

function J is defined up to a constant, the Poincaré inequality and this estimate
imply that

‖J − J0‖Ck < Cε .

Then it follows from Thom’s isotopy theorem [1] that the function J defines a
trivial fibration by invariant tori of w in the domain U . However, this contradicts
Lemma 3.2, which ensures that U is not trivially fibred by invariant tori of w.

We conclude that for any w0 ∈ R ⊂ Xk
ex, the corresponding first integral J0 is a

constant on M . The continuity properties of the kernel K and the density of the
set R readily imply that curlK(w) × w = 0, for any w ∈ Xk

ex, as we desired to
prove.

4. Adjoint and coadjoint invariants of volume-preserving

diffeomorphisms

In this section we describe the geometry of the adjoint and coadjoint actions of
the group of volume-preserving diffeomorphisms and prove Corollaries 1.2 and 1.3.

4.1. Invariants of the adjoint action on divergence-free vector fields and
proof of Corollary 1.3. The Lie algebra of the group SDiff(M) of (smooth)
volume-preserving diffeomorphisms on a manifold M with a volume form dμ is the
space X of all (smooth) divergence-free vector fields on M . The adjoint action of
the Lie algebra on itself is by means of the Lie bracket of vector fields: given v ∈ X,
the operator adv : w 
→ [w, v].

The divergence-free condition on a field w is equivalent to the condition that the
2-form iwdμ is closed on M . A divergence-free vector field ξ on M is exact if the
closed 2-form iξ dμ is exact. The space Xex of all exact divergence-free vector fields
on M is a Lie subalgebra of the Lie algebra X of all divergence-free vectors.

Note that adv leaves Xex invariant. Indeed, for w ∈ Xex and v ∈ X one has
iw dμ = dα for a 1-form α, then

i[w,v]dμ = [iw, Lv]dμ = iw(Lvdμ)− Lv(iwdμ) = −Lvdα = −dLvα ,

i.e. advw = [w, v] ∈ Xex.
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Furthermore, for any vector field ξ ∈ X one can define its rotation class λ(ξ) ∈
H1(M,R) as follows, see [3]. Algebraically, λ(ξ) is given by the cohomology class
of the closed 2-form iξdμ in H2(M,R), which is Poincaré isomorphic to H1(M,R).
Equivalently, if the set of 1-forms {hk}Nk=1 is a basis of the first cohomology group
of M , where N is the first Betti number of M , the rotation class λ(ξ) is a vector
in R

N ∼= H1(M,R) whose components are given by

(λ(ξ))k =

∫
M

iξdμ ∧ hk .

Geometrically, the rotation class is the averaging of asymptotic cycles defined
by the trajectories of the field ξ: for any x ∈ M take the trajectory gtξ(x) of the

field ξ starting at x = g0ξ (x) for time t ∈ [0, T ], and then close it up by a “short

path” (e.g. a geodesic) between x and gTξ (x). This closed path defines an element

λ(ξ, x, T ) ∈ H1(M,R). Then λ(ξ, x) := limT→∞ λ(ξ, x, T )/T ∈ H1(M,R) is an
asymptotic cycle associated with a point x ∈ M . It defines an element of L1(M)
by the Birkhoff ergodic theorem, and one can prove that λ(ξ) =

∫
M

λ(ξ, x) dμ, so
both the algebraic and the geometric definitions of λ(ξ) coincide, see [3].

Note that Xex = {ξ ∈ X : λ(ξ) = 0}, i.e., exact divergence-free vector fields
are exactly those having zero rotation class on M . Moreover, since any two closed
2-forms diffeomorphic via a diffeomorphism connected with the identity have the
same rotation class, the group action of the connected component of the identity
of SDiff(M) (or the action of the Lie algebra X) preserves fibers of the projection
λ : X → H1(M,R). Helicity H is then the only regular invariant on the zero fiber,
Xex = λ−1(0). Applying this consideration to vector fields of class Ck, k ≥ 4, one
proves Corollary 1.3.

Intuitively, the helicity value H and the homology class H1(M,R) describe the
full set of regular invariants. However, for non-zero fibers of the projection λ, only
relative helicity between two different fields is well-defined, cf. [4].

4.2. Invariants of the coadjoint action and proof of Corollary 1.2. The
dual of the Lie algebra X of all (smooth) divergence-free vector fields on M is
isomorphic to the space X∗ = Ω1(M)/dΩ0(M) of all (smooth) 1-forms, modulo all
exact 1-forms on M . The dual space to Xex is the space X∗

ex = Ω1(M)/Z1(M)
of all (smooth) 1-forms modulo all (smooth) closed 1-forms on M . The natural
embedding Xex ⊂ X corresponds to the natural projection π : X∗ → X∗

ex, i.e.
projections of cosets, π : Ω1(M)/dΩ0(M) → Ω1(M)/Z1(M). The fibers of this
projection are finite-dimensional and isomorphic to Z1(M)/dΩ0(M) = H1(M,R).

There is an equivalent and simpler description of the dual space

X∗
ex = Ω1(M)/Z1(M)

as the space of exact 2-forms on M , by taking the differential of 1-forms:
Ω1(M)/Z1(M) ∼= dΩ1(M). For three-dimensional M with volume form dμ, the
space X∗

ex = dΩ1(M) can also be identified with the space Xex of exact divergence-
free vector fields: an exact 2-form dα is associated with an exact field ξ by iξdμ =
dα. This is why one can consider both adjoint and coadjoint action on the space
of exact vector fields on a three-dimensional manifold.

Remark 4.1. In more detail, to relate the vorticity fields ξ = curl v and the corre-
sponding cosets [u] of 1-forms u = v�, we introduce the operator σ : ξ 
→ [u] defined
by u := (curl−1ξ)�, i.e. σ = I◦curl−1. Here the map I : X → X∗ = Ω1(M)/dΩ0(M)
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is the inertia operator from the Lie algebra X of divergence-free vector fields to its
dual: given a vector field v on a Riemannian manifold M , one defines the 1-form
v� as the pointwise inner product with the velocity field v, v�(w) := (v, w) for
all w ∈ TxM . Note that although both I and curl−1 are metric dependent, the
operator σ depends on the volume form dμ only, since ξ is the kernel of d[u], i.e.
iξdμ = d[u] = d σ(ξ). The map σ gives the isomorphism between the spaces Xex

and X∗
ex.

Using this operator σ, one can identify the elements in Xex and X∗
ex. The natural

pairing 〈·, ·〉 between X∗
ex and Xex becomes

(7) 〈ξ, v〉 = 〈[u], v〉 =
∫
M

curl−1ξ · v dμ ,

where ξ ∈ Xex, v ∈ Xex and [u] = σ(ξ) ∈ X∗
ex.

By the identification of spaces Xex and X∗
ex, one can introduce the coadjoint

action on Xex. We claim that the coadjoint operator ad∗v on any exact divergence-
free vector field ξ is given by the Lie bracket of two fields,

(8) ad∗v ξ = [ξ, v] ,

just like the adjoint action. Indeed, the action of ad∗v is as follows: for any v, w ∈
X(M) and ξ ∈ Xex(M), we have
(9)
〈w, ad∗vξ〉 = 〈w, ad∗vσ(ξ)〉 = 〈w,Lvσ(ξ)〉 = 〈w, σ(Lvξ)〉 = 〈w, σ([ξ, v])〉 = 〈w, [ξ, v]〉 .

The first equality is due to the identification of spaces Xex and X∗
ex. (Abusing

notations we use the same symbol ad∗ for the corresponding fields and forms.) We
also used here that the operator σ commutes with the volume-preserving changes
of coordinates, and hence with Lv.

The above consideration is a manifestation of the fact that the adjoint and coad-
joint actions of the group SDiff(M) are geometric, i.e. they consist of the volume-
preserving changes of coordinates. In the adjoint action one changes coordinates
for a vector field. For the coadjoint action one changes coordinates in the coset of
1-forms, or in the exact 2-form (the differential of the coset), or in the (vorticity)
vector field, which is the kernel field, i.e. the exact divergence-free vector field
naturally related to the 2-form.

To summarize, in the case of M with H1(M,R) = 0, one has the identifications
X∗ ∼= X∗

ex
∼= Xex

∼= X with the Lie-bracket action, and hence all regular integral
invariants on the dual space, i.e. all regular Casimirs, are functions of the helicity.
This proves Corollary 1.2.

In the case of M with nontrivial H1(M,R), one has a natural projection π :
X∗ → X∗

ex = Xex. The helicity is well-defined for the image of this projection, i.e.
for the vorticity field, and hence it has the same value for all fields in the same
coset [u] ∈ X∗. But now the helicity cannot be the only invariant of the coadjoint
action. For instance, take two different closed 1-forms u1 and u2 on M . For their
cosets [ui] ∈ X∗, i = 1, 2, one has π([ui]) = 0, i.e. they belong to the zero fiber of
this projection π. Their vorticity fields vanish, ξi = 0, since dui = 0, and hence
their helicity vanish as well, H(ξi) = 0. On the other hand, the cohomology classes
of ui are elements of H1(M,R) and are invariant under coordinate transformations
(in the identity connected component) of the group SDiff(M).
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Again, one expects that the helicity value H and the cohomology class H1(M,R)
describe the full set of regular invariants of the coadjoint action on X∗. Note, that
the fibers of the projection π : X∗ → Xex (unlike the fibers for λ : X → H1(M,R))
are finite-dimensional: they are affine spaces isomorphic to H1(M,R). However,
the cohomology class is well-defined only for the zero fiber of this projection, i.e.
cosets [u] of closed forms u.

5. Casimirs in 3D ideal and magnetic hydrodynamics

5.1. Geometry of the incompressible Euler equations. In [2] Arnold proved
that the Lagrangian description of the Euler equations (1) can be regarded as the
geodesic flow on the infinite-dimensional Lie group SDiff(M) of volume-preserving
diffeomorphisms of M with respect to a right-invariant L2-metric on the group.
This geometric point of view implies the following Hamiltonian framework for ideal
fluids.

Consider the (regular) dual space X∗ to the space X of divergence-free vector
fields on M , which is the Lie algebra of the group SDiff(M). This dual space X∗ is
isomorphic to the space of cosets Ω1(M)/dΩ0(M), where Ωk(M) is the space of all
smooth k-forms onM . An element in Ω1(M)/dΩ0(M) is [α] = {α+df : for all f ∈
C∞(M)}. The natural pairing between arbitrary elements [α] ∈ X∗ and v ∈ X is
given by 〈[α], u〉 :=

∫
M

α(u) dμ, where dμ is the volume form on the manifold
M . The coadjoint action of the group SDiff(M) on the dual X∗ is given by the
change of coordinates in (cosets of) 1-forms on M by means of volume-preserving
diffeomorphisms.

Using the Riemannian metric ( , ) on the manifold M , one can identify the Lie
algebra and its (regular) dual by means of the so-called inertia operator: given a
vector field v on M one defines the 1-form v� as the pointwise inner product with
the velocity field v: v�(w) := (v, w) for all w ∈ TxM . Note also that the 1-form v�

corresponding to a divergence-free field v is co-closed. Then the Euler equations (1)
can be rewritten on 1-forms α = v� as ∂tα+Lvα = −dP for an appropriate function
P on M , related to the pressure (see [4, 17]).

In terms of the cosets of 1-forms [α], the Euler equations assume the form

(10) ∂t[α] + Lv[α] = 0

on the dual space X∗. Equation (10) on X∗ turns out to be Hamiltonian with respect
to the natural linear Lie-Poisson bracket on the dual space and the Hamiltonian
functional H given by the kinetic energy of the fluid, H([α]) = 1

2

∫
M
(v, v) dμ for

α = v�, see details in [2, 4]. The corresponding Hamiltonian operator is given by
the Lie algebra coadjoint action ad∗v, which in the case of the diffeomorphism group
corresponds to the Lie derivative: ad∗v = Lv. Its symplectic leaves are coadjoint
orbits of the corresponding group SDiff(M).

All invariants of the coadjoint action, also called Casimir functions, are first in-
tegrals of the Euler equations for any choice of the Riemannian metric (with a fixed
volume form). Theorem 1.1 shows that the helicity is the only C1 (continuously
differentiable) Casimir function for the coadjoint action of the volume-preserving
diffeomorphism group SDiff(M) on exact divergence-free vector fields. In the par-
ticular case that the first homology group of M is trivial, this corresponds to the
coadjoint action of SDiff(M) on the whole dual space X∗ of the Lie algebra X (see
Section 4 for details).
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5.2. Magnetic- and cross-helicity in magnetohydrodynamics. Combining
Theorem 1.1 with the results of [10] one can describe regular invariants for mag-
netohydrodynamics (MHD). Recall that the MHD equations on a closed three-
dimensional Riemannian manifold M describe the motion of an infinitely conduct-
ing ideal fluid of velocity v carrying a magnetic field B:

(11)

⎧⎨
⎩

∂tv = −∇vv + (curl B)×B −∇p ,
∂tB = −[v,B] ,
div B = div v = 0 .

Here [v,B] stands for the Lie bracket of the vector fields v and B, and × denotes
the cross product on M .

Consider the space Xk
ex ×Xk

ex of pairs (ω,B) of vorticity and magnetic fields on
the manifold M . Then the magnetic helicity is defined as

H(B) :=

∫
M

B · curl−1B dμ ,

while the cross-helicity is

H(ω,B) :=

∫
M

B · curl−1ω dμ =

∫
M

B · v dμ ,

where ω = curl v on M (in other words, v is the only field in Xk
ex such that curl v =

ω).
It is well known [4] that both the magnetic helicity H(B) and the cross-helicity

H(ω,B) are first integrals of the MHD equations. Furthermore, they are Casimirs
of the MHD equations, i.e., they are invariants of the coadjoint action of the
semidirect-product group G = SDiff(M) � X∗ on the dual space of its Lie alge-
bra.

One can introduce the notion of a regular integral invariant F : Xk
ex × Xk

ex → R

similar to Definition 2.2, see details in [10]. Theorem 1.1 has the following MHD
analogue, proved mutatis mutandis.

Theorem 5.1. Let F be a regular integral invariant on Xk
ex × Xk

ex, then F is a
function of the magnetic helicity and the cross-helicity provided that k ≥ 4 (this
includes the case k = ∞). More precisely, there exists a C1 function f : R×R → R

such that F(ω,B) = f(H(B),H(ω,B)), where (ω,B) ∈ Xk
ex × Xk

ex.
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[2] V. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses
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