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The Euler non-mixing made easy

Boris Khesin
∗

Abstract

The non-transitivity without extra constraints in the 3D Euler equation is almost evident
and can be derived, e.g. from Morse theory.

The classical Euler equation describes the motion of an incompressible fluid filling a manifold
M as an evolution of its divergence-free velocity field v:

Btv ` ∇vv “ ´∇p.

Here p is the pressure function determined by the equation itself along with the divergence-free
condition div v “ 0. In this note we confine to the three-dimensional setting, dimM “ 3. One
of the main problems of hydrodynamics is the description of properties of the dynamical system
defined by the Euler equation in the appropriate space of velocity fields. It is known that this
is a Hamiltonian system with the Hamiltonian function given by the L2-energy of the fluid,
with the short-time existence for the corresponding flow for a sufficiently smooth initial v (for
v in Ck with non-integer k ą 1). While for finite-dimensional Hamiltonian systems on compact
manifolds one always has the Poincaré recurrence, for the 2D Euler on an annulus M “ S1 ˆ R

there are wandering solutions [2, 7], i.e. a neighborhood in the space of initial conditions, such
that solutions starting in that neighborhood will never return to it after some time. Note that
the existence of wandering solutions in 3D Euler, as well as in 2D Euler on an arbitrary M

without boundary, is still an open question.
However, in 3D it is known another dynamical property of the Euler equation.

Theorem. The 3D Euler equation on a compact M is non-transitive and hence non-mixing:
there are two open neighbourhoods in the Ck, k ě 1 phase space of velocities, so that the Euler
flow image of one of them will never intersect the other (as long as the flow exists). Such
neighborhoods can be chosen within (null-homologous) divergence-free fields with any fixed helicity
and any nonzero energy.

This property is based on the existence of various first integrals, and, in particular, on
vorticity transport, one of remarkable properties of the 3D Euler equation: the vorticity field
w “ curl v is frozen into the flow. A unifying idea for proving non-mixing in the 3D Euler
equation in [1, 5, 6] was as follows: find two neighbourhoods in the space of all velocity fields
with some incompatible topological properties of their vorticities, so that the Euler solutions
with initial conditions in one of them, while preserving this property, would not be able to enter
the other one. In [5] those neighbourhoods contained the fields whose vorticities have many
invariant tori in different isotopy classes (and then one was applying KAM, which required high
regularity, k ą 4). In [1] this was the property of vorticity to be of contact type or not, which
allowed lower smoothness (k ě 1).
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There are variations of the above formulation, see [1, 5, 6]: a) different smoothness, b)
specifying bounds for helicity and energy, c) existence of a countably many neighbourhoods, d)
existence in a given homotopy class for nowhere vanishing vorticity fields, e) local non-mixing
close to steady solutions (the latter was the initial motivation for the non-mixing study: prove
that some solutions will never get close to steady ones).

Proof. We are proving non-transitivity, from which non-mixing follows. We start with the C2

case for velocity. Let w0 be an initial vorticity C1 field. Assume that it has only non-degenerate
zeros (and possibly nondegenerate periodic trajectories) in M (and hence only a finite number
of them). Then there is a C1-small neighbourhood Upw0q of w0, such that all fields from Upw0q
have the same number of zeros and they all are non-degenerate. Similarly, if another initial
vorticity field w1 has a different number of non-degenerate zeros, there is a small neighborhood
V pw1q of fields with the same property and the flow φtpV pw1qq will never intersect Upw0q. Thus
the Euler flow is non-transitive. Note that the argument above requires C1-closeness for the
vorticity field (and hence C2 for the velocity field), which is the optimal smoothness for that
Morse-type argument to distinguish between different number of zeros.

To lower the smoothness to C0-regularity for vorticity (and hence C1 for velocity) one com-
pares vorticity without zeros with vorticity having nondegenerate zeros. Namely, C0-small per-
turbations of vorticities with nondegenerate zeros have at least as many zeros as the unperturbed
ones, while vorticities C0-close to the ones without zeros will also have no zeros. (Note that any
three-dimensional M admits a nonzero vorticity field.) Therefore the above argument still works
for C0-closeness for vorticities, thus giving the optimal smoothness for non-transitivity. Namely,
a non-degenerate zero of a vector field always has index ˘1, and according to the index theorem
(which is essentially the local Intermediate Value Theorem in the vector-function setting), it
must persist for C0-close perturbations (and globally sums to the Euler characteristic). Note
that one can weaken the nondegeneracy assumption on the vorticity to just having a certain
number of zeros of index ˘1.

Finally, by using the local construction on the vorticity described in the example below one
can generate pairs of new nondegenerate zeros with arbitrary helicity. An appropriate scaling
also allows one to provide any energy of the velocity, as taking the vorticity (or its inverse) is a
linear operator. l

Example. Rectify the vorticity field in a neighborhood of a nonsingular point and consider
a short invariant cylinder inside that neighborhood. We deform the field in the following way
to introduce inside the invariant topological cylinder two non-degenerate zeros (and a nonde-
generate periodic orbit) while keeping the field divergence-free and barely changing it on the
boundary.

First consider the 2D setting and a family of Hamiltonian fields with Hamiltonian functions
H “ ypx2 ` y2 ` aq near the origin. For a positive value of a the Hamiltonian does not have
critical points, and the field is topologically equivalent to that for the Hamiltonian H “ y near
the origin. When the parameter a changes from 0` to 0´, two saddles and two centers are born
for the corresponding Hamiltonian (i.e. area-preserving) field.

Now we consider an axisymmetric 3D analog of that Hamiltonian field by adding a rotation
about the x-axis. Then the above family of fields depending on the parameter a locally deforms
from a 3D filed without zeros to a field with two nondegenerate zeros born from the saddles
and one nondegenerate periodic orbit born from the two centers. By adjusting the volume form
such a construction can be made divergence-free. Furthermore, the periodic orbit is encased
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in a family of invariant tori. By changing the original Hamiltonian near the centers one can
control the speed of rotation and hence helicity accumulated near the periodic orbits without
disturbing the surrounding orbits. By making this insertions rotating in different directions in
various parts of M one can attain any prescribed total helicity. As discussed above, the total
scaling allows one achieve an arbitrary energy of the velocity as well.

Remark. An advantage of the C1-setting for vorticity is that one has plenty of locally
defined continuous Casimirs – namely, multiplicators (i.e. eigenvalues of the linearization) of
non-degenerate zeros of vorticity. Each nondegenerate zero of vorticity in 3D gives 2 locally
defined Casimirs (the eigenvalues at each singularity sum to zero because of the divergence-
free condition). These Casimirs may replace the first integrals of [5] measuring the volume of
invariant tori of a given isotopy class (or maybe other more subtle invariants for nonvanishing
fields). In the C0-case one has only semicontinuous integer-valued Casimirs measuring the
number of zeros or the like. For instance, in [1] one studies vorticities of contact type, which
must have no zeros, so the index argument provides a weaker requirement for a neighborhood
to stay away from fields with zeros, which are certain not to be of contact type. In order to
prove c) one can consider fields wk that have at least 2k non-degenerate zeros, thus providing a
countable number of neighbourhoods.

Finally, note that for d) and e) one needs to use more subtle arguments. For instance,
whenever one imposes additional constraints for a nonvanishing field, e.g. to stay in the same
homotopy class, subtle invariants of contact homology are employed in [1]. The local non-mixing
discussed in [6] was based on a specific fibrated structure of 3D steady solutions.

To summarize, without imposing extra constraints Problem #31 from [4] about non-mixing
in low smoothness becomes rather straightforward, due to the existence of various Casimirs
separating coadjoint orbits. (Actually, this is a property of general Euler-Arnold equations: the
existence of a Casimir separating neighborhoods of coadjoint orbits implies the non-mixing of
the corresponding equation in the dual of the corresponding Lie algebra. This property is based
solely on the “kinematics” of the equation.) On the other hand, the tools proposed in [1, 5, 6]
(contact type forms and KAM) might be of particular interest by themselves and should find
other applications in hydrodynamics. The above also leads to the following natural question:

Problem. Is the Euler equation non-mixing on the coadjoint orbits of initial vorticity
functions in 3D?

An answer to this question might involve the actual “dynamics” of the Euler equation,
similarly to the study of wandering orbits in 2D fluids in [2, 7], which is counterposed to finite
dimensions with Poincaré’s recurrence on all compact coadjoint orbits.
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