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Abstract: Wedescribe the geometry of the incompressible porousmedium (IPM) equa-
tion: we prove that it is a gradient dynamical system on the group of area-preserving
diffeomorphisms and has a special double-bracket form. Furthermore, we show its simi-
larities and differences with the dispersionless Toda system. The Toda flow describes an
integrable interaction of several particles on a line with an exponential potential between
neighbours, while its continuous version is an integrable PDE, whose physical meaning
was obscure. Here we show that this continuous Toda flow can be naturally regarded
as a special IPM equation, while the key double-bracket property of Toda is shared
by all equations of the IPM type, thus manifesting their gradient and non-autonomous
Hamiltonian origin. Finally, we comment on Toda and IPM modifications of the QR di-
agonalization algorithm, as well as describe double-bracket flows in an invariant setting
of general Lie groups with arbitrary inertia operators.

1. Introduction

The goal of this paper is three fold.
We start by studying the geometry of the 2D incompressible porous medium (IPM)

equation and describe its relation to other equations of mathematical physics. This equa-
tion was recently found to possess intriguing properties for a general potential and to be
related to problems of optimal mass transport, see [5,22]. Here we show that the IPM
equation is a gradient dynamical system on the Lie group of area-preserving diffeomor-
phisms, and moreover, its gradient nature turns out to be due to a novel double bracket
form of the IPM equation. Recall that the double brackets were introduced by Brockett
for matrix equations [2,6]. Such equations manifest double nature: they turn out to be
gradient on adjoint orbits of compact Lie groups, as well as Hamiltonian with possibly
time-dependent Hamiltonian functions. The Hamiltonian viewpoint requires a certain
identification of a Lie algebra and its dual, which is natural in the compact case due to
bi-invariant inner product. In Appendix A we extend the setting of double brackets to
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the duals of arbitrary Lie algebras by exhibiting the role of the inertia operator for the
identification of a Lie algebra in its dual. It turns out that the 2D IPM equation is a double
bracket equation on the dual of the Lie algebra Xμ(M) of divergence-free vector fields
on M . In the vorticity representation, which we employ, the inertia operator is given by
the Laplacian � on M . Furthermore, extending this result, we prove the local in time
existence of solutions for the IPM equation on a symplectic manifold in any dimension.

The second goal of the paper is a presentation of the dispersionless Toda flow as a
certain porous medium equation. The classical Toda system on a real line describes an
evolution of a finite collection of particles with neighbours interacting with exponential
potential. The corresponding continuous limit, the dispersionless Toda flow (see e.g.
[3,6]), can be thought of as a flow of continuum of particles mutually interacting with
local exponential-type potential. We show that this interaction can be regarded as a
porous medium interaction with a different (“the identity”) inertia operator on a certain
subspace of the dual X∗

μ(M). This way the dispersionless Toda dynamics turns out to
be a special type of percolation of faster particles through slower ones.

Finally, this new IPM point of view on the Toda flow suggests an unusual modifica-
tion of the classical QR diagonalization algorithm for symmetric matrices, particularly
efficient for matrices of large sizes. It was shown in [10] that the QR diagonalization
algorithm is a discrete time version of the Toda flow. It turns out that while theoretically
convergent, its numerics is rather unstable and its speed of convergence to reordered
eigenvalues is rather slow. The IPM equation with the Laplace inertia operator turns
out to be an efficient replacement for that, as thanks to the presence of �−1 in the
equation, its flow is stable and very fast converging. We demonstrate this in Sect. 4 by
presenting diagonalization process of a 256×256matrix by two algorithms, where, even
after 1000 iterations, the Toda flow keeps oscillating, while the IPM flow obtains and
reorders the eigenvalues much faster. We also propose yet another modification of this
algorithm, providing a fast diagonalization of large symmetric matrices without ordering
their eigenvalues.

2. The IPM Equation

2.1. Definition of the IPM flow.

Definition 2.1. Given a potential function V on a manifold M of an arbitrary dimension,
the incompressible porous medium (IPM or Muscat) equation is given by

ρ̇ + div(ρv) = 0,

subject to the conditions

v + ρ∇V = −∇ p, div v = 0.

This is a continuity equation on the density ρ transported by the divergence-free part v
of the vector field ρ∇V on M , see [5,22]. The dot stands for the derivative in time. Note
that the pressure term is determined by the condition

div(ρ∇V ) = −�p.

The IPM equation is also called a Muscat equation, where MUSCAT stands for
Multiple-Doppler Synthesis and Continuity Adjustment Technique.
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If M is a Kähler 2-manifold, the setting we are going to consider from now on, the
field v has a (locally defined) stream functionψ , v := −J∇ψ . Assuming that the stream
function is defined globally on M we get

∇ψ = ρ J∇V + J∇ p ⇐⇒ �ψ = div(ρ J∇V ) = ∇ρ · J∇V = {ρ, V }.
We thereby obtain a “vorticity formulation” of the IPM equation as

ρ̇ = {ψ, ρ}, �ψ = {V, ρ}. (2.1)

Remark 2.2. The first equation emphasizes the Hamiltonian nature of the evolution of
density ρ with the (time-dependent) Hamiltonian ψ with respect to the area form on M .
In particular, ρ preserves all the standard Casimir functions

C f (ρ) =
∫
M

f (ρ(x))dx

for any (measurable) functions f : R → R.

2.2. Gradient flows on volume preserving diffeomorphisms. It turns out, the IPM equa-
tion is not only Hamiltonian, but it has a more prominent gradient nature. Namely, let
M be a two-dimensional Riemannian manifold and Diffμ(M) stands for the group of
Hamiltonian diffeomorphisms.

We are interested in gradient flows on Diffμ(M) with respect to a right-invariant
Riemannian metric defined by an inertia operator A : Xμ(M) → X∗

μ(M). For the group
Diffμ(M) we may identify the dual X∗

μ(M) of its Lie algebra with the space of exact
2-forms d�1(M) or with the space of vorticity functions C∞

0 (M). The pairing for a
Hamiltonian vector field v = Xψ and a vorticity ω ∈ C∞

0 (M) is

〈v, ω〉 =
∫
M

ψ ω μ.

With respect to this pairing the ad∗ operator is given by the bracket

ad∗
v ω = {ψ,ω}.

Since the Lie algebra of Hamiltonian vector fields can be identified with the Poisson
algebra of Hamiltonian functions (modulo constants), from now on we shall implicitly
identify v with its Hamiltonian (or stream) function ψ via v = Xψ .

Let V ∈ C∞(M) be a potential function for a classical mechanical system with con-
figuration space M . Now we fix a function ω0 ∈ C∞(M), which will have the meaning
of density or vorticity depending on the setting. Consider now a “linear” functional on
the group Diffμ(M) associated with this fixed function of the form

E0(ϕ) =
∫
M

(V ◦ ϕ)ω0 μ =
∫
M
V ω μ, (2.2)

where ω := ω0 ◦ ϕ−1 is the vorticity transported by a diffeomorphism ϕ ∈ Diffμ(M).
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Theorem 2.3. The gradient flow on Diffμ(M) for the functional (2.2) and the right-
invariant Riemannian metric determined by the inertial operator A is

ϕ̇ = −∇E0(ϕ) = −Xψ ◦ ϕ, where Aψ = {V, ω0 ◦ ϕ−1}.
The dynamics is completely determined by the transported vorticity ω = ω0 ◦ ϕ−1 via
the “double bracket”-type flow

ω̇ = −{A−1{V, ω}, ω} (2.3)

for the inertial operator A = � given by the Laplacian, A : ψ �→ ω = �ψ .

Proof. This is an application of the general frameworkdescribed inAppendixA (Sect. 5).
By setting E0(ϕ) = F(ω0 ◦ ϕ−1) for F(ω) = ∫

M Vω μ, the gradient flow for E0
corresponds to the dynamics of the generator ω given above. Namely, it is a double
bracket flow with the inertia operator squeezed in between the two brackets. �
Example 2.4. Take the manifold M to be the cylinder, M = T ∗S1 = {(φ, z) | φ ∈
S1, z ∈ R}, while the potential V (φ, z) = z to be the height function.

a) For the inertia operator A = � on stream functions we obtain the incompressible
porous medium equation (IPM) defined above. Note that A defines the standard L2

Arnold metric, when considered on vector fields (instead of their stream functions),
and it is the H−1-metric when considered on vorticities. The potential functional is
F(ρ) = ∫

M Vρ.
b) For the identity inertia, A = id, and the same potential we obtain the continuous

Toda flow defined in the next section.

Remark 2.5. Notice that the functional F(ρ) = ∫
M Vρ can be also regarded as a Lya-

punov function for the IPM flow with respect to the H−1-metric:

d

dt
F(ρ) =

∫
M
V {ψ, ρ} =

∫
M

{V, ρ}�−1{V, ρ} = −〈{V, ρ}, {V, ρ}〉H−1 .

Remark 2.6. It isworth to add that the IPMequation (aswell as theToda systemdiscussed
below), being a “double bracket” flow, exhibit both gradient and Hamiltonian properties:
it is a gradient flow for a function on a coadjoint orbit, but it is also a Hamiltonian flow
for another function on the same orbit. Note, however, that this is an example of a non-
autonomousHamiltonian equation: the Hamiltonian function does change in time, as its
differential is related to a certain bracket itself. Thus the convergent asymptotic behavior
typical for gradient systems (and discussed below as a diagonalization procedure) does
not contradict the conservative nature of autonomous Hamiltonian systems.

2.3. Local well-posedness of IPM. In this section we use the techniques developed by
Ebin and Marsden [12] to prove local in time well-posedness of the IPM equation (2.1).
Short-time existence results for M = R

2 were already given by Córdoba, Gancedo, and
Orive [9]. The alternative approach described below is of interest due to a much closer
relation to Euler-Arnold equations and previous geometric analysis framework.

Theorem 2.7. Let M be a closed Kähler (Riemannian and symplectic) manifold of di-
mension 2d and let V ∈ C∞(M). Furthermore, let s > d + 1. Then for every initial
ρ0 ∈ Hs(M) there exists a maximal existence interval [0, T ) with T > 0 in which the
equation (2.1) has a unique solution ρ : [0, T ) → Hs(M).
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Proof. First, we relax the equation by lifting it to the group of symplectomorphisms
Diffμ(M):

η̇ = v ◦ η, v = ∇⊥�−1{V, ρ}, η(0) = id, (2.4)

where ρ = ρ0 ◦ η−1. Since s > d + 1 it follows from results by Palais [23] and by Ebin
and Marsden [12] that the Sobolev completion Diffsμ(M) is a Hilbert manifold. The aim
is to show that the equation (2.4) is a smooth ordinary differential equation onDiffsμ(M).
We have that v can be thought of as the following composition: v = A ◦ B ◦C ◦ τ(η−1)

where

A : Hs+1
0 (M) → Xs

μ, ψ �→ ∇⊥ψ

B : Hs−1
0 (M) → Hs+1

0 (M), ρ �→ �−1ρ

C : Hs(M) → Hs−1
0 (M), ρ �→ {V, ρ}

τ : Diffμ(M) → Hs(M), ϕ �→ ρ0 ◦ ϕ.

The flow can now be written as

η̇ = (
(A ◦ B ◦ C ◦ τ)(η−1)

) ◦ η.

This proves that (2.4) is indeed an ODE on Diffsμ(M). However, it remains to prove that
it is a smooth ODE.

The operators A, B,C, τ are all smooth, but the operation η → η−1 is not more
than C0 (in particular not Lipschitz). The strategy of Ebin and Marsden [12] is to prove
that the particular combination of the ‘inverse map–differential operator–forward map’
is smooth. To this end, we define Diffsμ(M)-bundle operators

Ã : Diffsμ(M) × Hs+1
0 → TDiffμ(M), (η, ψ) �→ (A(ψ ◦ η−1)) ◦ η,

B̃ : Diffsμ(M) × Hs−1
0 → Diffμ(M) × Hs+1

0 , (η, ρ) �→ (B(ρ ◦ η−1)) ◦ η

C̃ : Diffsμ(M) × Hs → Diffμ(M) × Hs−1
0 , (η, ρ) �→ (C(ρ ◦ η−1)) ◦ η.

The total flow can now be written as

η̇ = ( Ã ◦ B̃ ◦ C̃)(η, ρ0).

Since A and C are differential operators, and since the right composition is smooth, it
follows from standard results (e.g. [18, Lemma 3.4]) that Ã and C̃ are smooth bundle
maps. By the same argument it follows that B̃−1 is a smooth bundle map. Since B is
an isomorphism it follows that B̃ is also a smooth bundle map (e.g. [18, Lemma 3.2]).
Then the standard Picard iterations on Banach manifolds give local well-posedness in
the sense of Hadamard. �
Remark 2.8. In the next section we shall see that the Toda flow is geometrically exactly
of the same form as IPM. The only difference is the choice of inertia operator A, which is
the Laplacian for IPM but the identity for Toda. From an analysis point of view, however,
the IPM flow behaves much better than Toda. In particular, the continuous Toda flow
(see below) cannot be rigorously posed as an ODE on the Hilbert manifold Diffsμ(M):
it is prevented by a loss of spatial derivatives in the right-hand side. As we discuss and
illustrate in Sect. 4, this lack of regularity suggests slower convergence to a steady state.
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3. Toda Flows, Their Continuous Limit, and Double Bracket Representation

3.1. Toda lattice. Consider n interacting particles on a line, where neighbours inter-
act with an exponential potential. The corresponding system is described by the Toda
flow in the symplectic space (R2n,

∑
dqi ∧ dpi ) generated by the Hamiltonian H =

1
2

∑n
j=1 p

2
j +

∑n−1
j=1 exp 2(q j − q j+1), being the sum of kinetic and potential energies,

with the interaction potential exp(u) where u := 2(qk − qk+1) stands for the doubled
distance between neighbours. (One usually normalizes the system so that themass center
is at 0, i.e.,

∑
qi = 0, so there are n − 1 degrees of freedom.)

Proposition 3.1 (Flaschka [13], Moser [21]). Newton’s equation of the Toda flow of
n interacting particles after the change of variables a j = exp(q j − q j+1) with j =
1, . . . , n − 1, and bk = pk with k = 1, . . . , n, assumes the following form:

{
ȧk = −ak(bk+1 − bk)
ḃk = −2(a2k − a2k−1).

(3.1)

This system has the Lax form L̇ = [L , M], where

L =

⎛
⎜⎜⎜⎜⎝

b1 a1 0 0
a1 b2 a2
0 a2 b3

. . . an−1
0 an−1 bn

⎞
⎟⎟⎟⎟⎠ and

M =

⎛
⎜⎜⎜⎜⎝

0 a1 0 0
−a1 0 a2
0 −a2 0

. . . an−1
0 −an−1 0

⎞
⎟⎟⎟⎟⎠ ,

with
∑

bk = 0. This system is Hamiltonian with the Toda Poisson structure given by
{b j , a j−1}′ = −a j−1, {b j , a j }′ = a j , while all other brackets are zero. The Hamiltonian
function in the new coordinates is H = 1

2 tr(L
2) = ∑n−1

1 a2j +
∑n

1 b
2
k , with evolution

equations being

ȧ j = {H, a j }′, ḃ j = {H, b j }′.

Remark 3.2. The Lax equation L̇ = [L , M] implies that L changes in its conjugacy
class, L(t) = u(t)L0u−1(t), where u(t) ∈ SO(n) are solutions to u̇ = Mu, u(0) = I .
In particular, functions Ik = 1

k tr(L
k), that are symmetric polynomials of the eigenvalues

of L , are first integrals for k = 2, . . . , n. In particular, I2 = H . (In Lie algebra language,
L̇ = [L , M] is an equation on a symplectic manifold, which is the orbit of L0 understood
as an orbit in the appropriate lower-trangularmatrix group,whileω is the orbit symplectic
structure coming from the Lie-Poisson bracket in that space.) The existence of n−1 first
integrals, which turn out to be in involution, on the symplectic 2(n − 1)-dimensional
space implies complete integrability of the Toda flow.



The Toda Flow as a Porous Medium Equation 1885

Remark 3.3. The matrix M itself can be represented as the commutator: M = [L , D],
where D := diag(1, 2, . . . , n). This implies that the Toda system of n particles can be
rewritten as the double-bracket equation:

L̇ = [L , [L , D]] (3.2)

for the matrix L as above, see Bloch [2] and Bloch, Brockett, and Ratiu [4].

3.2. Toda continuous limit. Following Bloch, Flaschka, and Ratiu [3], consider now the
continuous limit of the above system.

Definition 3.4. The continuous Toda flow (or dispersionless Toda system of equations)
is the following evolution system on functions a(z), b(z) of PDEs:

{
ȧ = −a ∂

∂z b
ḃ = −2 ∂

∂z a
2.

There are several ways to obtain this system from its discrete analogue. One can
directly replace the discrete parameter k ∈ Z in the Toda system (3.1) by a continuous
parameter z ∈ R, while replacing the differences of consecutive terms by the derivatives.

Alternatively (see [3]), one can think of L and M as infinite tridiagonal matri-
ces and express them in the form L = ak exp (∂/∂φ) + bk + ak exp (−∂/∂φ) and
M = ak exp (∂/∂φ) − ak exp (−∂/∂φ), where exp (∂/∂φ) is understood as the diag-
onal shift operator. (Indeed, if φ enumerates diagonals and then according to the Taylor
expansion, exp (ε∂/∂φ) is a shift by ε: for a test function f (φ) one has f (φ + ε) =∑

m εm f (m)(φ)/m! = exp(ε∂/∂φ) f (φ) as ε → 0.)
Now replace the integer index k ofak andbk by a continuous parameter z ∈ R to obtain

time-dependent functions a(z), b(z). The corresponding system of equations becomes
the system of dispersionless Toda equations. The continuous limit of the tridiagonal
matrix L assumes the form L(z, φ) = b(z) + 2a(z) cosφ, where 2 cosφ = exp(iφ) +
exp(−iφ) and exponentials exp(±iφ) label the first super- and sub-diagonals, while
variable z parametrizes the diagonal direction. (The above form of L can be thought of
as a compact version of a hyperbolic analog L = b(z)+2a(z) cosh φ, where 2 cosh φ =
expφ + exp(−φ).)

Proposition 3.5 (Faybusovich 1990, see [3]). For the function

L(φ, z) = b(z) + 2a(z) cosφ

on M = T ∗S1 the dispersionless Toda equations assume the form of the Brockett double
bracket equation

dL

dt
= −{L , {L , z}}, (3.3)

where {·, ·} is the Poisson bracket for the symplectic structure dz ∧ dφ on the annulus
M = {(z, φ) | z ∈ R, φ ∈ S1}.
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Proof It is a straightforward computation:

{L , z} = ∂L

∂φ

∂z

∂z
− ∂z

∂φ

∂L

∂z
= −2a(z) sin φ

Then

{L , {L , z}} = {L ,−2a(z) sin φ}
= ∂L

∂φ
(−2a′(z) sin(φ)) + 2a(z) cosφ(b′(z) + 2a′(z) cosφ)

= 2a(z) sin φ(2a′(z) sin φ) + 2a(z) cosφ(b′(x) + 2a′(z) cosφ)

= 4a(z)a′(z) + 2a(z)b′(z) cosφ

Thus the equation dL
dt = −{L , {L , z}} for L̇ := ḃ(z) + 2ȧ(z) cosφ is equivalent to

the system {
ȧ = −ab′
ḃ = −2(a2)′, (3.4)

where prime stands for the derivative in z. �
Remark 3.6 In the continuous limit the integrals Ik = tr(Lk), k = 1, 2, . . . become

Jk = 1

2π

∫
R

∫ 2π

0
(b(z) + 2a(z) cosφ)k dz dφ.

In particular, J2 = ∫
R
(b(z)2 + 2a(z)2) dz.

Yet onemoreway of obtaining the continuous Toda flowdirectly from the coordinates
in the (q, p) particle phase space is given in Appendix B.

3.3. The Hamiltonian nature of the Toda flow. Consider the Poisson structure

{F,G}′(a, b) =
∫
R

a
δF

δa

∂

∂x

δG

δb
− a

δG

δa

∂

∂x

δF

δb
.

Then Hamilton’s equations become

ȧ = {H, a}′ = −a
∂

∂x

δH

δb

ḃ = {H, b}′ = − ∂

∂x
a

δH

δa
.

Thus we see that (3.4) is Hamiltonian for

H(a, b) = 1

2

∫
R

(2a2 + b2) dz = J2(a, b)/2.

Notice that ad∗ is given by

ad∗
(u,v)(a, b) =

(−a ∂
∂x v

− ∂
∂x au

)

where (u, v) are algebra elements. (Here we assume that a2b vanishes at ±∞ so the
boundary terms vanish when we do integration by parts.) Thus, we have shown that the
system (3.4) admits both a Hamiltonian and a gradient formulation.
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3.4. A comparison of the continuous Toda and the IPM equation. Now we return to
the double-bracket form of both the equations. Recall that the IPM equation on a 2D
manifold can be thought of as the following equation on the vorticity ω, cf. equation
(2.3):

ω̇ = −{A−1{z, ω}, ω}.
On the other hand, the dispersionless Toda equation (3.3) has the form

L̇ = −{{z, L}, L}
on the function L(φ, z) = b(z)+2a(z) cosφ, where b plays the role of the (continuous)
momentum and a would be related to the particle density on the line, cf. equation (6.1).

Remark 3.7 For the interpretation as a porous medium equation the following feature of
the Toda dynamics of n particles will be important: ak(t) → 0 and bk(t) → constk as
t → ±∞ for k = 1, . . . , n − 1. This implies that the distance between particles goes
to infinity, |qk+1(t) − qk(t)| → ∞, and L(t) → diag(p±

1 , . . . , p±
n ). Furthermore, due

to the isospectral property, p±
k are eigenvalues, that are assumed to be distinct, while

the interaction is repelling, with p j (t) → p±
j and q j (t) → p±

j t + q±
j as t → ∞. If

λ1 < · · · < λn are ordered eigenvalues of L(t) for all t , then p+j = λ j , p
−
j = λn+1− j

and λ j are first integrals, implying integrability (see Moser [21]).
In other words, as t → ±∞ the particles are almost non-interacting, while as t

changes from −∞ to +∞ their interaction (by the Toda exponential potential) can be
thought of as the faster particles “penetrating through" slower ones. This can also be
interpreted as rearranging the order of particles to have their momenta increasing on the
line for large t .

Now one can interpret the continuous Toda flow as a flow of particles on the line, in
which particles “go through each other" as through porous medium and undergo certain
interactions, according to the equations. The interaction law is determined by the inertia
operator A and is different for the IPMequation and theTodaflow,where A is respectively
�or the identity id. (Thedifference in the inertia operator is somewhat similar to different
shapes of rigid bodies leading to different Euler top equations according to those shapes.)
Hence the Toda flow can be regarded as a certain seepage in the porous medium.

Example 3.8 We present modelling of the two flows, IPM in equation (2.3) and contin-
uous Toda in equation (3.3), on the sphere M = S2 to see the corresponding similarity
and differences in their dynamics. Details of how the numerical simulations were carried
out are given in Sect. 4 below.

We note that in the case of Toda, the dynamics in a(z) and b(z) is visualized as a
dynamics on L of special tridiagonal form (or its smooth analog of the form L(z, φ) =
b(z) + 2a(z) cosφ with auxiliary variable φ). Such a submanifold in the space of all
matrices or all functions L(z, φ) is invariant but unstable, which makes the modeling
numerically challenging. The corresponding evolution clearly shows the penetration of
particles, as they try to align with the potential, which is the height function. See Fig. 1
for dynamics of functions L : S2 → R as a spherical analog of the cylinder.

On the other hand, the dynamics of the IPM equation thanks to the (inverse inertia)
operator �−1 in Equation (2.3), the corresponding dynamics of the vorticity function
ω is numerically stable. Hence, while an analogous submanifold of functions ω is not
invariant, it does not affect the asymptotic dynamics: solutions still converge to a similar
final configurations aligned with the potential, see Fig. 2. These similarities in the IPM
and Toda flows allow one to interpret the latter as a porous medium-type equation.
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(a) Initial time (b) First intermediate time

(c) Second intermediate time (d) Final time

Fig. 1. Fluid interpretation of the continuous Toda flow. As a gradient flow, it strives to move the positive
parts (red) to the north and the negative parts (blue) to the south while also being zonal (corresponding to the
matrix being diagonalized)

(a) Initial time (b)First intermediate time

(c) Second intermediate time (d) Final time

Fig. 2. The IPM flow on the sphere. Note that being gradient and similarly to Toda, it also strives to move the
positive parts (red) to the north and the negative parts (blue) to the south while also being zonal. This motion
is achieved differently than for the Toda flow: it is smoother and the corresponding numerical scheme is more
stable

4. Comments on the Diagonalization Algorithms

4.1. Discretization of the fluid and Toda flows. We first describe the setup for numerical
simulations yielding Figs. 1 and 2. The connection between isospectral flows of matrices
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Fig. 3. Evolution of some diagonal elements for the Toda and IPMflows. Both flows tend to order the elements,
but IPM does so in a significantly more stable way

and incompressible transport equations for functions on some domain M is established
via the following discretization procedure. The notion, due to Zeitlin [24] and based
on the explicit quantization of Hoppe [14], gives an approach for Casimir preserving
numerical discretization schemes for incompressible 2D hydrodynamics. In order for the
discretization to yield finite-dimensional operators (matrices), the underlying symplectic
manifold M has to be compact. Thus, instead of T ∗S1 we work with S2 (for which
efficient discretization algorithms are developed in [8,19]).

The corresponding discretization gives us projections TN : C∞(S2) → u(N ) with
right inverses T −1

N such that (weakly)

T −1
N ([TN ( f ), TN ( f )]) → { f, g} as N → ∞.

The size N of the matrices should thus be seen as a discretization parameter.
In the case of Toda, we confine to the invariant subspace of purely imaginary sym-

metric matrices iS(N ) ⊂ u(N ), which we identify with real symmetric matrices S(N).
This restriction corresponds to the restriction of functions {L ∈ C∞(S2) | L(θ, φ) =
L(θ,−φ)} where θ is the polar angle and φ is the azimuthal angle. As described above,
the finite-dimensional Toda flow (3.2) actually evolves on even the smaller subspace of
tridiagonal symmetric matrices, which corresponds to functions on S2 whose spherical
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harmonics components L�m vanish for |m| > 1. Furthermore, zonal functions corre-
spond to diagonal matrices, and, in particular, the height function on the sphere z = cos θ

corresponds to the diagonal matrix D with equidistant entries from −1 (south pole) to
1 (north pole). We have thus obtained that the finite-dimensional Toda flow (3.2) is a
numerical discretization of the corresponding continuous Toda flow (3.3) for M = S2

(instead of M = T ∗S1).
To obtain a matrix discretization of the IPM equation on S2 we need, in addition to

the structures just described, a discrete version of the Laplace operator. Based on the
representation of so(3) in u(N ), such an operator�N : u(N ) → u(N ) is given byHoppe
and Yau [15]. An efficient method for solving the discrete Poisson equation �NW = P
inO(N 2) operations is derived in [8]. This provides all the ingredients needed to obtain
a matrix discretization of the IPM equation (2.1) for M = S2 and V (θ, φ) = z = cos θ .

We simulate the two systems with initial data given by a randomly generated, tridiag-
onal symmetric N × N matrix for N = 256. For time integration we use the isospectral
preserving method developed in [20]. Snapshots of the results, visualized as smooth
functions via the Hammer projection of the sphere, are given in Figs. 1 and 2. In both
cases the flows tend towards a zonal state (corresponding to a diagonal matrix).

4.2. Modification of the QR diagonalization via the IPM flow. The classical QR algo-
rithm for diagonalization of symmetricmatrices,which is one of themain diagonalization
algorithms, can be regarded as the Toda flow at integer timemoments, see [10]. The latter
(often restricted to tri-diagonal matrices) is called the Toda algorithm, and it not only
diagonalizes matrices, but also orders their eigenvalues. For instance, its stopping time,
when the numerically found eigenvalues are sufficiently close to the actual ones, has
universal nature and is an important research topic, see [11].

Our study comparing the Toda and IPM flows suggests the following modification of
the QR diagonalization algorithm for symmetric matrices, which is particularly efficient
formatrices of large size. Namely, Fig. 3 compares the speed of convergence to reordered
eigenvalues for the 256 × 256 initial matrix by our finite-dimensional versions of the
Toda flow and the IPM flow. The graphs for the 10th, 50th, 100th, 150th, and 200th
eigenvalues continue to oscillate for a long time in the Toda flow. On the other hand,
there are no such oscillations for the IPM flow, which quickly arrives at the final values.
The convergence turns out to be so much faster due to the inverse Laplacian as the inertia
operator in the IPM equation, which makes the numerical scheme more stable.

This comparison is continued in Fig. 4 which describes the final diagonal values for
the Toda and IPM algorithms (and also the new diagonalizing flow outlined below) by
juxtaposing themwith the exact spectrum. The result for IPM is almost indistinguishable
from the true spectrum, while the Toda flow still exhibits oscillations and unordered seg-
ments in the spectrum (after 1500 iterations). While the detailed study is yet to be done,
these figures already suggest that the IPM equation with the Laplace inertia operator
might be an efficient replacement for the diagonalization and reordering algorithm: due
to the presence of �−1 in the equation, its flow is stable and converging much faster.

4.3. An unordered diagonalization algorithm. The new approach via IPM also suggests
new gradient flows for diagonalization of symmetric matrices. Indeed, from a numerical
point of view, a convergence to a diagonalmatrix (called deflation) ismuchmore essential
then ordering the eigenvalues. Thus, it is natural to consider the isospectral gradient flow
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Fig. 4. Final diagonal elements compared with exact spectrum for Toda, IPM, and the diagonalizing gradient
flow (4.1)

on symmetric matrices L that aims to maximize the following energy

F(L) = 1

2

N∑
i=1

|Lii |2.

Indeed, recall that the square of the matrix Frobenius norm is tr (LL�). For a symmetric
matrix L = L� the norm is constant on its isospectral orbit. Furthermore, this squared
norm is given by the sum of squared eigenvalues, so the energy functional F on the orbit
is maximized if and only if L is diagonal. The differential of this energy at a matrix L is
given by the projection (denoted by D(L)) onto the diagonal part. Thus the IPM version
of the gradient flow for the energy F is given by

L̇ = [�−1
N [D(L), L], L], (4.1)

where �N is the discrete Laplacian described above. The continuous analog of D(L)

for M = S2 is L2-orthogonal projection onto the subspace of zonal functions (i.e.,
averaging along fixed latitudes). As can be seen in Fig. 5, the convergence to a diagonal
matrix is fast, and as stable as in IPM, but contrary to IPM and Toda the elements on
the diagonal are not sorted. As mentioned above, if sorted, the computed spectrum is
precise, similarly to the IPM, cf. the last two diagrams in Fig. 4.
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Fig. 5. Evolution of some diagonal elements for the diagonalizing gradient flow (4.1). The convergence is
fast, but contrary to Toda and IPM this flow does not strive to sort the elements

(a) Initial time (b) First intermediate time

(c) Second intermediate time (d) Final time

Fig. 6. The diagonalizing gradient flow (4.1) visualized on the sphere. The flow strives to a zonal configuration,
but contrary to Toda and IPM there is no tendency to a monotone zonal state from south to north

Finally, in Fig. 6 we see how the gradient flow for the energy F interpreted on the
sphere strives to a zonal state, but with bands that are non-ordered from south to north,
while instead correlated to the initial configuration. These findings indicate that the
flow (4.1)might be useful for diagonalizationwhen sorting of eigenvalues is unimportant.

Remark 4.1 The code for the simulations and animations illustrating the dynamics of
the three flows are available here:

https://github.com/klasmodin/diagonalizing-flows
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5. Appendix A: Universal Double Bracket Flows

5.1. The gradient flow on a Lie group. Here we consider a framework for Riemannian
gradient flows confined to group orbits. This leads to the proper setting for the double
bracket flows in the case of an arbitrary inertia operator. A similar framework, with focus
on shape analysis, is also given in [1].

Let Q be a configuration manifold, possibly infinite-dimensional. Furthermore, let
G be a Lie group (or a Fréchet–Lie group in the infinite-dimensional case) acting on Q
from the left by a smooth action map � : G × Q → Q; the action of g ∈ G on q ∈ Q is
denoted g · q. This action is typically neither free, nor transitive. The orbit of q ∈ Q is

Orb(q) = {g · q | q ∈ G}.
We think of Q as the space of ‘shapes’ and the orbit Orb(q) represents all possible
deformations of q. For a given template shape q0, our objective is to study gradient
flows on Orb(q0). Notice, however, that we do not assume that Q is Riemannian; the
Riemannian structure on Orb(q0) is instead inherited from G. Before we state the main
result of this section, we need a few concepts from geometric mechanics (cf. [17]).

By differentiating the action map at the identity we obtain the infinitesimal action
map g × Q → T Q, where g = TeG is the Lie algebra of G. The infinitesimal action
of v ∈ g on q ∈ Q is denoted v · q. This linear map in v is the (cotangent bundle)
momentum map:

Definition 5.1 The momentum map J : T ∗Q → g∗ is defined by

〈J (q, p), v〉 = 〈p, v · q〉 ∀ v ∈ g,

where T ∗Q denotes the cotangent bundle of Q.1

Next, we introduce a Riemannian structure on G.

Definition 5.2 A Riemannian metric 〈〈·, ·〉〉 : TG × TG → R on G is called right-
invariant if

〈〈u, v〉〉e = 〈〈u · g, v · g〉〉g, ∀ g ∈ G, ∀ u, v ∈ g,

where u · g denotes the tangent lifted right action of g on u.

1 If Q is an infinite-dimensional Fréchet manifold, the cotangent bundle T ∗Q is given in terms of the
regular dual (cf. [16]), defined so that T ∗

q Q � Tq Q.



1894 B. Khesin, K. Modin

A right-invariant metric is completely determined by the inner product 〈〈·, ·〉〉e.
Definition 5.3 Let 〈〈·, ·〉〉 be a right-invariant metric on G. Then the inertia operator
A : g → g∗ is defined by

〈Av, u〉 = 〈〈v, u〉〉e.
Since G acts on Q from the left, the action map induces a Riemannian structure on

Orb(q). To see this, we first need the notion of horizontal vectors on G.

Definition 5.4 The vertical distribution associated with the action of G on q ∈ Q is the
subbundle of TG given by

Verg = {v · g ∈ TgG | v · g · q = 0}.
If 〈〈·, ·〉〉 is a right-invariant metric on G, then the corresponding horizontal distribution
is given by

Horg = Ver⊥g

where the complement is taken with respect to 〈〈·, ·〉〉.
Lemma 5.5 Assume that Orb(q) is a submanifold of Q. Then any right-invariant Rie-
mannian metric 〈〈·, ·〉〉 induces a Riemannian metric g on Orb(q) fulfilling

gg·q(v · g · q, v · g · q) = 〈〈v, v〉〉e ∀ v · g ∈ Horg. (5.1)

Proof Since Orb(q) is a manifold, the mapping π : G → Q defined by π(g) = g · q
is a submersion. Thus, Tgπ : Horg → Tπ(g)Orb(q) is a linear isomorphism. Now, for
(x, ẋ) ∈ TOrb(q), take any g such that x = π(g) (which exist by definition of the group
orbit). Define the metric at x by

gx (ẋ, ẋ) = 〈〈(Tgπ)−1 ẋ︸ ︷︷ ︸
v·g

, (Tgπ)−1 ẋ︸ ︷︷ ︸
v·g

〉〉g.

By right-invariance, this metric satisfies (5.1) and is independent of the choice of g. �
Let G be a Lie group acting from the left on a manifold Q of shapes. Let q0 ∈ Q and

let F : Q → R be a function on Q. We are interested in finding the minimum of F on
the G-orbit of q0, that is, we want to minimize the function E : G → R defined by

E(g) = F(g · q0).
If G is equipped with a right-invariant Riemannian metric g, defined by an inertia

operator A : g → g∗, one can define the gradient vector field ∇E on G by

gg(∇E(g), ġ) = 〈dE, ġ〉 .

Our aim is to solve the minimization problem by considering the gradient flow

ġ = −∇E(g). (5.2)
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Proposition 5.6 The gradient ∇E is given by

∇E(g) = ξ · g.
where ξ ∈ g is given by

ξ = A−1 J (g · q0, dF(g · q0)).
Proof By definition of the gradient we have

〈〈∇E, ġ〉〉g = d

dt
E(g(t)) = 〈dF, ξ · (g · q0)〉 .

where ξ = ġ · g−1. Now from the definition of the momentum map it follows that

〈〈∇E, ġ〉〉g = 〈J (g · q0, dF), ξ 〉 = 〈〈A−1 J (g · q0, dF), ġ · g−1〉〉e
The result follows since the metric is right invariant. �
Proposition 5.7 The gradient flow (5.2) induces a gradient flow on the G-orbit of q0,
given by

q̇ = −u(q) · q (5.3)

where

u(q) = A−1 J (q, dF(q))

Proof Follows from Prop. 5.6. �
Definition 5.8 The double-bracket flow on the dual Lie algebra g∗ with the inertia op-
erator A and a potential function F on g∗ is as follows:

ṁ = ad∗
A−1 ad∗

dF(m)
(m)

(m).

For the quadratic potential F(m) = 〈m, A−1m〉 the corresponding flow is

ṁ = ad∗
A−1 ad∗

A−1m
(m)

(m).

Proposition 5.9 The double-bracket flow on g∗ is the gradient for the restriction of F
on each coadjoint orbit.

Proof Indeed, consider the special case where Q = g∗. The action is given by g · m =
Ad∗

g m. The momentum map is thereby given by

〈J (m, ξ), v〉 = 〈ξ, ad∗
v(m)〉 = 〈adv(ξ),m〉 = 〈− adξ (v),m〉 = 〈− ad∗

ξ (m), v〉
Then from (5.3) we obtain the equation(s) in Definition 5.8, and the statement follows
from Proposition 5.7. The corresponding flow tries to minimize the energy on a specific
co-adjoint orbit. �

Note also that this flow is always orthogonal (w.r.t. A−1) to the (Hamiltonian) Euler-
Arnold flow: one of them is tangent to levels of the Hamiltonian, while the other is
orthogonal to the levels of the same function regarded as a potential. One can also see
this directly, since

〈ad∗
A−1 ad∗

A−1m
(m)

(m), A−1 ad∗
A−1m(m)〉

= 〈m, [A−1 ad∗
A−1m(m), A−1 ad∗

A−1m(m)]〉 = 0.
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5.2. Contraction property of the flow. Consider the gradient flow (5.2).

Proposition 5.10 Let d : G×G → R denote the Riemannian distance function induced
by the right-invariant metric associated with the gradient flow (5.2). Let γ : [0, T ) → G
be a solution curve. Then, for all t ∈ [0, T )

d(γ (0), γ (t))2 ≤ t
(
E

(
γ (0)

) − E
(
γ (t)

))
.

Proof First notice that

d

dt
E(γ (t)) = 〈〈∇E(γ ), γ̇ 〉〉γ = −〈〈γ̇ , γ̇ 〉〉γ = −〈〈γ̇ ◦ γ −1, γ̇ ◦ γ −1〉〉e = −〈〈v, v〉〉e

for the vector field v(t) generating the curve γ (t). Denote by ‖v‖2A := 〈〈v, v〉〉e =
〈Av, v〉. Since any curve between γ (0) and γ (t) cannot exceed the length of the geodesic
between the points we have

d(γ (0), γ (t)) ≤
∫ t

0
‖v(s)‖A ds ≤ √

t

(∫ t

0
‖v(s)‖2A ds

)1/2

,

where the last inequality is Cauchy–Schwartz on L2([0, t]). �
Remark 5.11 Theorem 5.10 in relation to the IPM flow then gives the following result:
the “Arnold fluid-distance” between ϕ(0) and ϕ(t) is bounded by

d(ϕ(0), ϕ(t))2 ≤ t
∫
M
V (ρ(0) − ρ(t)).

6. Appendix B: A Direct Continuous Toda Limit

Start from the Hamiltonian for the finite-dimensional Toda lattice in (q j , p j ) variables.
Take the limit n → ∞ to obtain a continuous system on T ∗Dens(R). Under this limit
we have

q j+1 − q j → ϕ′(z)

where ϕ is the diffeomorphism describing how each point on the line has moved. Since
we also have ϕ′(z) > 0 and therefore ρ = Jac(ϕ−1) = 1/ϕ′ ◦ ϕ, we get the potential

U (ϕ) =
∫
R

V (ϕ′)dz =
∫
R

V (1/ρ ◦ ϕ−1)dz,

where the potential V is

V (r) = exp(−2r).

The gradient of U is computed as

d

dt
U (ϕ) =

∫
R

V ′(ϕ′)ϕ̇′dz =
∫
R

(
− ∂

∂x
V ′(ϕ′)

)
ϕ̇ dz

Newton’s equations on the space of diffeomorphisms is thereby

ϕ̈ = ∂

∂z
V ′(ϕ′) = −2

∂

∂z
exp(−2ϕ′).
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The fluid formulation of this system is

v̇ + ∇vv =
(

∂

∂z
V ′(ϕ′)

)
◦ ϕ−1, ϕ̇ = v ◦ ϕ.

Let us now make the following change of variables

a = exp(−ϕ′), b = ϕ̇. (6.1)

Since the density is uniform, the variable b is interpreted physically as the Lagrangian
momentum. Direct calculations now yield

ȧ = −a
∂

∂z
ϕ̇ = −a

∂

∂z
b

and, likewise,

ḃ = ϕ̈ = −2
∂

∂z
a2.

This is the same equation as in the first continuous limit, which can be rewritten as

ȧ = −a
∂

∂z
b, ḃ = −2

∂

∂z
a2. (6.2)
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