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Abstract The study of diffeomorphism groups and their applications to problems
in analysis and geometry has a long history. Geometric hydrodynamics pioneered
by V. Arnold in the 1960s considers an ideal fluid flow as a geodesic motion on the
infinite-dimensional group of volume-preserving diffeomorphisms of a flow domain
equipped with the energy metric. Similar considerations on the space of densities
led to a geometric description of the optimal mass transport with the Kantorovich-
Wasserstein metric. In the same vein information geometry associated with the
Fisher-Rao metric and Hellinger distance can be viewed as an analogue of optimal
transportation equipped with a higher-order Sobolev metric. In the present chap-
ter we describe various metrics on diffeomorphism groups, introduce appropriate
topology, smooth structures, and describe the dynamics on such infinite-dimensional
manifolds. One of the goals in this chapter is to explain how, alongside with topolog-
ical hydrodynamics, symplectic dynamics and mass transport problems, information
geometry with its sophisticated toolbox and techniques has become yet another area
for potential applications of geometric analysis on diffeomorphism groups.
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1 Introduction

One of the main ingredients of the geometric approach to hydrodynamics pioneered
by V. Arnold [5] was the consideration of the group of volume-preserving diffeomor-
phisms of a flow domain as a natural infinite-dimensional Riemannian manifold and
a configuration space for ideal fluids. The geodesic flow on that group related to the
L2 metric induced by the fluid kinetic energy describes solutions of the Euler equa-
tion of an incompressible inviscid fluid. The general framework of Arnold turned
out to include a variety of other nonlinear partial differential equations of mathe-
matical physics, now often referred to as the Euler-Arnold equations. The L2 metric
on the diffeomorphism group also happened to be related to another flourishing
mathematical domain, namely, the problem of optimal mass transport.

Subsequently, it turned out that a similar geometric approach to diffeomorphism
groups, albeit related to Sobolev H1-typemetrics, sheds new light onmany notions in
geometric statistics and information theory. In our survey we focus on these metrics
on diffeomorphism groups and their quotient spaces viewed as spaces of densities.

We start with a very detailed background introducing appropriate tame Fréchet
topology and smooth structures on infinite-dimensional manifolds, for the future use
on diffeomorphism groups and density spaces. This allows us to put on a firm ground
all the relevant differential-geometric and dynamical considerations. We continue by
presenting the Euler-Arnold equations for the geodesic flow in one-sided invariant
metrics on Lie groups, both in finite and infinite dimensions. We also show how the
L2 metric on the group of diffeomorphisms naturally descends to the Wasserstein
metric on the space of densities and whose geodesics provide the way of optimal
mass transfer.

On the other hand, geometric statistics turns out to be closely related to degenerate
right-invariant ÛH1 Riemannian metrics on the full diffeomorphism group. In a sense,
in the framework of diffeomorphism groups, information geometry associated with
the Fisher-Rao metric and its spherical Hellinger distance can be viewed as an ÛH1-
analogue of standard optimal transport associated with the metric on the density
space induced by the (non-invariant) L2-metric on the group of all diffeomorphisms
and whose Riemannian distance is the celebrated Wasserstein distance, see [30].

We describe this geometry in detail and discuss properties of solutions of the
associated geodesic equations. It turns out that the corresponding geometry on the
space of densities is spherical for any compact manifold M , while the corresponding
Euler-Arnold equation is a natural generalization of the completely integrable one-
dimensional Hunter-Saxton equation. Lastly, we present geometric constructions
of the so-called α-connections introduced in geometric statistics by Chentsov [15]
and Amari [1] as well as their generalizations to diffeomorphism groups of higher-
dimensional manifolds, following [36].

The approach developed in this chapter places information geometry squarely
within the general differential-geometric framework of diffeomorphism groups en-
visioned at various times by Cartan, Kolmogorov, Kantorovich and Arnold which
includes hydrodynamics, symplectic geometry and optimal transport. It provides a
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foundation for a natural infinite dimensional generalization of this fast growing field
and may hopefully lead to new insights and further developments. For these reasons
and for the benefit of those readers approaching these subjects for the first time we
included a more extensive background on nonlinear functional analysis.

2 Infinite-dimensional manifolds

It has long been recognized that many of the function spaces that arise in analysis and
geometry possess a natural structure of infinite-dimensional differentiablemanifolds.
This includes various groups of diffeomorphisms of compact manifolds, which are of
interest in this chapter. Asmathematical objects these spaces are both very interesting
and very complicated, and any researcher planning to take full advantage of their
properties as manifolds and groups faces a problem at the outset of choosing a
suitable topology.

For our purposes a convenient and natural functional-analytic framework of tame
Fréchet spaces, as introduced by Sergeraert and further developed by Hamilton,
provides the most convenient setting. An excellent expository article [27] can be
consulted for details regarding the constructions needed in the sequel.

In this section we recall the basic notions of differential calculus in Fréchet spaces
and then introduce the group of diffeomorphisms of a compact Riemannianmanifold,
its subgroup of diffeomorphisms preserving the volume form, and the quotient space
of smooth probability densities, as tame Fréchet manifolds.

2.1 Differential calculus in Fréchet spaces

We begin with a brief review of the fundamentals of the calculus in Fréchet spaces.
Most of the basic definitions and properties of Fréchet spaces can be found in the
monographs of Dunford and Schwartz [19] and Rudin [48].

2.1.1 Fréchet spaces

Definition 1 A Fréchet space X is a complete Hausdorff topological vector space
whose topology is defined by a countable collection of seminorms ‖·‖k where
k = 0,1,2.... A sequence un converges to u in X if and only if for all k one has
‖un − u‖k → 0 as n→∞.

The seminorms are separating in the sense that to each u , 0 there corresponds at
least one k for which ‖u‖k , 0. Furthermore, the topology onX is locally convex and
metrizable — it has a countable local base (at the origin 0) consisting of convex sets
and there is a compatible translation-invariant distance function obtained directly
from the seminorms by setting
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d(u, v) :=
∞∑
k=0

2−k
‖u − v‖k

1 + ‖u − v‖k
for any u, v ∈ X.

Bounded subsets of X are precisely those which are bounded with respect to all the
seminorms defining the topology. Thus, continuous linear transformations between
Fréchet spaces can be characterized as mapping bounded sets to bounded sets.

Example 1 A canonical example of a Fréchet space is the space C∞(M) of smooth
functions on a compact Riemannian manifold M with a family of seminorms given
by the uniform Ck norms.

Example 2 More generally, let E be a vector bundle over M equipped with a metric
and a compatible connection∇. If u is a smooth section of E then∇u ∈ C∞(T∗M⊗E)
and, using the induced connection on the tensor product T∗M ⊗ E , we also have
∇2u ∈ C∞(T∗M⊗T∗M⊗E). Continuing this processwe obtain a countable collection
of the uniform Ck norms

‖u‖Ck =
k∑
j=0

sup
x∈M
|∇ ju(x)| , k = 0,1,2 . . . , (1)

which turn the space C∞(M,E) of smooth sections of E into a Fréchet space. Other
norms, which are often used in this setting, are the Sobolev Hk norms

‖u‖2
Hk =

k∑
j=0

∫
M

|∇ ju|2dµ , k = 0,1,2 . . . , (2)

where µ is the Riemannian volume form on M , and the Hölder Ck ,α norms

‖u‖Ck ,α = ‖u‖Ck + sup
x∈M ,0<r<iM

r−αωr (x,∇ku) , k = 0,1,2 . . . (3)

with 0 < α < 1 and the modulus of smoothness given by

ωr (x,u) = sup
y1,y2∈Br (x)

��∇ku(y1) − Π
y2
y1∇

ku(y2)
�� .

Here Br (x) is a geodesic ball at x of radius less than the injectivity radius iM > 0 of
M and Πy2

y1 is the parallel translation operator in the tensor bundle T∗M ⊗k ⊗ E along
the unique minimal geodesic between y2 and y1.

Example 3 Another example of a Fréchet space which is of particular importance in
Fourier analysis is the Schwartz space S(Rn). Its elements are the rapidly decreasing
smooth functions on Rn and its topology is defined this time by seminorms

‖u‖k = sup
x∈Rn , |α | ≤k

|xαDαu(x)| for k = 0,1,2 . . . ,
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that are not norms, where α = (α1, . . . , αn) is an n-tuple of nonnegative integers of
length |α | =

∑n
j=1 αj , xα = xα1 · · · xαn and Dα = i−|α |∂α/∂xα.

Many of the usual operations on normed spaces can be applied to construct
further examples of Fréchet spaces. A closed linear subspace of a Fréchet space,
the direct sum of Fréchet spaces and the quotient of a Fréchet space by a closed
subspace are all Fréchet spaces. Fundamental results of abstract functional analysis
such as the Hahn-Banach theorem, the closed graph theorem, and the open mapping
theorem continue to hold in the Fréchet setting with proofs requiring only minor
adjustments as compared with the standard Banach case. Thus, for example, an
immediate consequence of the open mapping theorem is that any continuous linear
bijection between Fréchet spaces has a continuous inverse, i.e., it is a topological
isomorphism (homeomorphism) of Fréchet spaces. For proofs of such facts see e.g.,
[19], [31] or [48].

An important exception arises when constructing the dual of a Fréchet space X,
that is, the space X∗ of continuous linear functionals on X. Although the assumption
of local convexity ensures, via the Hahn-Banach theorem, a good supply of such
functionals, this is insufficient to guarantee that X∗ is a Fréchet space. In general,
the dual space of a locally convex space does not carry any distinguished topology
and it will not be Fréchet unless X itself is normable, cf. [31]. For example, the dual
of C∞(M) is the space D ′(M) of distributions on a compact manifold M . The same
problem arises for more general continuous linear transformations between Fréchet
spaces and hence some care must be taken when working with notions involving
families of such maps. In particular, this entails the use of a notion of differentiability
based on the Gateaux (directional) derivative.

2.1.2 The Gateaux derivative and its properties

Definition 2 Let X and Y be Fréchet spaces. A continuous map f : X ⊃ U → Y is
of class C1 (continuously differentiable) on an open subset U ⊂ X if the limit

df (u)h = f ′(u)h := lim
t→0

f (u + th) − f (u)
t

(4)

exists for all u ∈ U and h ∈ X and if the map df : U × X → Y is continuous as a
function of both variables. Partial derivatives of functions depending on two or more
variables are defined in the usual manner.

It should be noted that if X and Y are Banach spaces then this notion of differ-
entiability is weaker than the standard one based on the Fréchet derivative which
requires that the map u → df (u) from U to the space of bounded linear maps
L(X,Y) be continuous in the operator norm topology. In fact, the two derivatives do
not coincide even in finite dimensions.

Example 4 The real-valued function
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f (x, y) =


0 if (x, y) = (0,0)

x + y +
x3y

x4 + y2 if (x, y) , (0,0)

is Gateaux but not Fréchet differentiable at the origin in R2.

The second derivative d2 f is defined as the derivative of the first order derivative,
and we say that f is of class C2 if d2 f exists and is continuous jointly as a function
on the product space. Now Cr functions are defined by induction and we say that f
is smooth of class C∞ if it is Cr for all r . A function of two (or more) variables that
is jointly continuous, C∞ smooth with respect to one of the variables and linear with
respect to the other is easily seen to be jointly smooth in both variables.

Notwithstanding differences between the two notions,1 the Gateaux derivative of
any continuously differentiable function enjoys most of the expected properties and
obeys the usual rules of calculus.

Proposition 1 Let f : X ⊃U → Y be a function of class Cr between Fréchet spaces
and let U ⊂ X be an open set.

1. (Linearity) For any u ∈ U and any h, k ∈ X and for any scalar c we have

df (u)(ch + k) = cdf (u)h + df (u)k .

2. (Fundamental theorem of calculus) For any h ∈ X we have

f (u + th) − f (u) =
∫ 1

0
df (u + th)h dt

provided that U is convex so that the entire segment u + th (0 ≤ t ≤ 1) lies in
U ; in particular, f is locally constant if and only if df = 0.

3. For any u ∈ U the map (h1, . . . , hr ) → (dr f )(u)(h1, . . . , hr ) is symmetric and
r-linear.

4. (Chain rule) If g is another function of class Cr then so is the composition g ◦ f ,
and we have

d(g ◦ f )(u) = dg( f (u))·df (u) ,

as well as analogous formulas for the iterated derivatives.
5. (Taylor’s formula) For any h ∈ X we have

f (u+ h) = f (u)+ df (u)h+ · · ·+
1

(r − 1)!

∫ 1

0
(1− t)r−1(dr f )(u+ th)(h, . . . , h) dt

provided that r ≥ 2 and the segment u + th lies in U .

Proof The proofs of all these facts are carried out in a routine manner with the help
of the Hahn-Banach theorem by reducing to the real-valued case and applying the
classical finite-dimensional calculus, see e.g., [27]. �

1 It is not hard to show that any function of class C2 in the above sense is continuously differentiable
in the sense of the standard Fréchet differentiability.
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2.1.3 Manifolds modelled on Fréchet spaces

We now have enough tools of the Fréchet calculus to generalize a number of standard
constructions of differential topology such as manifolds, vector bundles, principal
bundles etc. to the Fréchet setting.

Definition 3 A Fréchet manifold M modelled on a Fréchet space X is a Hausdorff
topological space equippedwith amaximal atlas of (pairwise compatible) coordinate
charts {Uα, ϕα} where {Uα} form an open cover of M and ϕα : Uα → Vα are
homeomorphisms onto open subsets Vα of X such that for all α, β the coordinate
transition maps ϕα ◦ ϕ−1

β defined on ϕβ(Uα ∩Uβ) are of class C∞.

Remark 1 M is locally compact if and only if themodel spaceX is finite-dimensional.
In this caseM is a smooth manifold in the usual sense.

Many standard constructions can be now carried over from finite dimensions to
the Fréchet setting without much difficulty.

(i). A subset S ⊂ M is a Fréchet submanifold of M if X = X1 × X2 is a product of
Fréchet spaces and if around each point in S there is a coordinate chart (U , ϕ)
with ϕ : U ⊂ M → X such that ϕ(U ∩S) = ϕ(U ) ∩ (X1 × {0}). An atlas forS
is now obtained from that ofM by restriction, i.e., {(Uα ∩S, ϕα |Uα∩S)}.

(ii). A continuous map f : M → N between two Fréchet manifolds modelled on X
and Y is of class Cr (resp. C∞) if for every p ∈ M there exist charts (U , ϕ) at
p ∈ U and (V ,ψ) at f (p) ∈ N such that the map ψ ◦ f ◦ ϕ−1 from the open
set ϕ( f −1(V ) ∩ U ) into Y is of class Cr (resp. C∞). If the map f is bijective
and if both f and f −1 are of class Cr (resp. C∞) then f is a Cr (resp. C∞)
diffeomorphism. Furthermore, any such map induces a well-defined tangent map
df : TM → TN which for each p ∈ M carries the fibre TpM linearly to Tf (p)N.
If, in addition, the differential df (p) is surjective then f is a submersion.

(iii). In particular, let t → c(t) be a curve through a point p in a Fréchet manifoldM,
that is, a differentiable map c : R ⊃ I → M from an open interval I containing
zero with c(0) = p. Two curves c1 and c2 are tangent at p if c1(0) = p = c2(0)
and (ϕ ◦ c1)

′(0) = (ϕ ◦ c2)
′(0) in some chart (U , ϕ) (hence, by the chain rule,

in every chart) around p. An equivalence class of such curves defines a tangent
vector toM at p. As in finite dimensions, this establishes a bijection between the
model space X and the set TpM of all such equivalence classes (the tangent space
at p) by means of which the latter acquires the structure of an isomorphic Fréchet
space. The disjoint union TM =

⋃
p∈M TpM with the natural smooth projection

map π : TM → M given by π(v) = p if v ∈ TpM becomes another Fréchet
manifold, the tangent bundle ofM modelled on the product space X × X.

(iv). More generally, one defines vector bundles and fibre bundles over M in the
usual way as another Fréchet manifold F together with a smooth projection map
π : F → M whose derivative is surjective (i.e., a submersion). Each point p of
the base manifold lies in some coordinate chart (U , ϕ) on M with π−1(U ) '
ϕ(U ) ×Y ⊂ X ×Y and the fibre π−1(p) has the structure of a linear Fréchet space
in the former and a Fréchet manifold in the latter case. A (cross-) section of either
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bundle is a smooth map s : M → F satisfying π ◦ s = idM. WhenF is the tangent
bundle TM then its sections are just smooth vector fields onM.

2.1.4 Geometric tools: connections, curvature, geodesics and metrics

A connection ∇ on a Fréchet vector bundle F with (standard) fibre π−1(p) ' Y over
a manifold M modelled on a Fréchet space X is a smooth map that assigns to each
point ofF a subspace of the tangent space which is complementary to the null space
of dπ at that point. This amounts to assigning to each coordinate chart of the bundle
F a family of bilinear maps, called the Christoffel symbol (or connection coefficient)
map

Γ : (U ⊂M) × Y × X → Y p,w, v 7→ Γp(w, v) (5)

which is jointly continuous as a function on the product of Fréchet spaces, smooth in
p and linear in v andw (hence, jointly smooth in all three variables). The curvature of
a connection on a Fréchet vector bundleF is the trilinear mapR : TM×TM×F→ F

whose local representation in a coordinate chart is

Rp(u, v)w = dΓ(p)(w,u, v) − dΓ(p)(w, v,u) + Γp(Γp(w, v),u) − Γp(Γp(w,u), v)

where p ∈ U ⊂ M, u, v ∈ TxM and w ∈ Fp . The curvature R is independent of the
choice of a chart.

A connection onM is by definition a connection on the tangent bundle TM which
gives rise to the notion of differentiation of vector fields onM. Namely, the covariant
derivative of a vector field W in the direction of V is the vector field ∇VW whose
expression in a coordinate chart U ⊂ M is

∇VW(p) = dW(p) · V(p) + Γp(V(p),W(p)) p ∈ U ⊂ M. (6)

Furthermore, a connection ∇ is said to be symmetric if its Christoffel symbols Γp
are symmetric with respect to its two entries at any point p.

If γ(t) is a smooth curve inM and ifV is a vector field along2 γ then a connection∇
induces covariant differentiation along γ by the formula D

dtV = ∇γ′V . As in classical
(finite dimensional) geometry, a curve γ(t) inM is a geodesic of ∇ if D

dt γ
′ = 0 (i.e.,

if the acceleration along γ is zero) which in a local chart takes the form of a second
order differential equation

γ′′ = Γγ(γ
′, γ′). (7)

Remark 2 It should be pointed out that, in contrast to the case whenM is a Banach
manifold, prescribing an initial position γ(0) = p0 and velocity γ′(0) = u0 does not
imply that the corresponding Cauchy problem for the geodesic equations (7) admits
a local (in time) unique solution. It is not hard to construct examples displaying
either non-existence or non-uniqueness of solutions.

2 That is, the map R 3 t 7→ V (t) ∈ Tσ(t )M depends differentiably on t .



Contents 11

In order to proceed it is also important to allow for generalizations of the classical
Riemannian geometric notions.

Definition 4 Aweak-Riemannian (or pre-Riemannian) metric on a Fréchet manifold
M modelled on X is a smooth assignment to each point in M of a positive definite
bilinear form gp on the tangent space at p. In coordinate charts this yields a jointly
continuous function (U ⊂M) × X × X → R on the product:

p, v,w 7→ gp(v,w) = 〈v,w〉p

which is smooth in p and linear in v and w.

The prefix weak- (or pre-) is meant to indicate that each tangent space TpM is an
inner product (pre-Hilbert) space with the topology induced by gp = 〈·, ·〉p which
is weaker than the Fréchet topology induced from the model space X. Likewise, the
Riemannian distance function of a pre-Riemannian metric onM defined in the usual
manner as the infimum of lengths∫ b

a

〈η′(t), η′(t)〉1/2dt

of all piecewise smooth curves joining two points p = η(a) and q = η(b), induces a
topology onM that is also strictly weaker than its original Fréchet topology.

Example 5 For any integer r ≥ 0 the Sobolev Hr inner product

〈u, v〉L2 =

r∑
j=0

∫
M

〈∇ ju(x),∇ jv(x)〉 dµ (8)

on the space C∞(M,T M) of smooth vector fields on a compact Riemannian manifold
M (with volume form µ) is a weak-Riemannian metric.

LetM be a Fréchet manifold equipped with a weak-Riemannian metric g = 〈·, ·〉.
As in the finite-dimensional case, we say that an affine connection ∇ is Levi-Civita
if it is symmetric and satisfies

X 〈V,W〉 = 〈∇XV,W〉 + 〈V,∇XW〉 (9)

for any vector fields X , V and W . Unlike in the finite-dimensional case, the existence
of a Levi-Civita connection on M (compatible in the above sense with a weak-
Riemannian metric) is not guaranteed.3 However, if such a connection can be defined
then it is necessarily unique.

In their geometric treatments of statistics Amari [3] and Chentsov [15] found it
useful to generalize the metric property (9) and work systematically with a more
adequate concept of (squared) distance from one point to another. These notions can
be defined also in our present setting.

3 Essentially, this is because not all continuous linear functionals on a pre-Hilbert space can be
represented by the inner product.
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More precisely, let M be a Fréchet manifold with a pre-Riemannian metric g as
above. Two connections ∇ and ∇∗ on M are said to be dual (or conjugate) with
respect to g if

X 〈V,W〉 = 〈∇XV,W〉 + 〈V,∇∗XW〉 (10)

for any vector fields X , V and W on M. It is clear that in this case (∇ + ∇∗)/2 is a
connection satisfying (9). The triple (g,∇,∇∗) is said to define a dualistic structure
onM.

Similarly, we say that a smooth function D : M ×M → R is a contrast function
(also called a divergence) if

(i) for any p,q ∈ M we have D(p,q) ≥ 0 with equality only if p = q
(ii) the matrix of second derivatives −(∂2D(p,q)/∂p ∂q)|p=q is strictly positive defi-

nite at every p ∈ M.

Condition (ii) de facto defines a Riemannian metric onM together with a covariant
derivative whose Christoffel symbols can be obtained from the matrix of its third
order derivatives. In the finite dimensional case these formulas take the form

gi j(p) = −
∂2D(p,q)
∂pi∂qj

��
p=q

, Γi j ,k(p) = −
∂3D(p,q)
∂pi∂pj∂qk

��
p=q

1 ≤ i, j, k ≤ n.

A symmetric connection ∇ is said to be flat if its curvature tensor vanishes. A
Fréchet manifold M equipped with a dualistic structure is called dually flat if both
∇ and ∇∗ are flat.

2.2 The tame category of Sergeraert and Hamilton

One important item conspicuously missing from the list in Sect. 2.1.2 and 2.1.3 is
the inverse function theorem — perhaps the most fundamental result of differential
calculus. It shows that the study of many nonlinear problems in analysis can be
effectively accomplished by linearization. It is also a useful tool in geometric analysis
when it comes to constructing nontrivial examples of manifolds. Such a tool will be
needed to endow the group of volume preserving diffeomorphisms with the structure
of a Fréchet manifold.

2.2.1 Tame Fréchet spaces

There is a good reason for this omission. While it is well known that this theorem
holds in the category of Banach spaces (see e.g., [18] or [34]) a straightforward
generalization fails spectacularly for Fréchet spaces with any reasonable notion of
differentiability. For a simple example consider themap f 7→ e f from the space C(R)
of continuous real-valued functions on the line into itselfwith the topology of uniform
convergence on compact sets. Clearly, its differential at 0 is the identity and the
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function is injective. However, it is not locally invertible because any neighbourhood
of 1 contains functions which can assume negative values. Amore elaborate example
of this phenomenon of greater geometric interest involves the (Lie group) exponential
mapping of the group of diffeomorphisms, see Example 20 below. Other interesting
counterexamples can be found in [37] or [27].

A satisfactory replacement for that is the Nash-Moser inverse function theorem
whose formulation requires introducing some extra structure. First, note that, without
loss of generality, the seminorms in any Fréchet spaceX can be assumed to be graded
by strength

‖u‖k ≤ ‖u‖k+1 for k = 0,1,2 . . . and u ∈ X.

This can be achieved simply by adding to each seminorm all the seminorms of
lower index. There may be many different collections of gradings defining the same
topology on X. Once a specific choice of a grading is made, the space X is referred
to as a graded Fréchet space.

Example 6 Any Banach space is a graded Fréchet space.

Example 7 The sequential space

ΣB =
{
{xn}n=1,2... ⊂ B : ‖{xn}‖k = sup

n
enk ‖xn‖ < ∞ for all k

}
consisting of exponentially decreasing sequences in a fixed Banach space B with
norm ‖·‖ is a graded Fréchet space with seminorms ‖·‖k .

Example 8 The Fréchet space C∞(M,E) of smooth sections of a vector bundle E
over a compact manifold M is graded by either the uniform Ck norms (1) or the
Sobolev Hs norms (2).

Definition 5 Let X and Y be graded Fréchet spaces and let U ⊂ X be an open set.
A continuous map f : X ⊃ U → Y is said to be a tame map if there are integers r
(the degree) and b (the base) such that

‖ f (u)‖k ≤ C(1 + ‖u‖k+r ) for all u ∈ U and k ≥ b , (11)

where C > 0 depends on k. (Note that the numbers r and b may be different for
different open sets U .) The map is said to be a smooth tame map if f is of class C∞
and all of its Gateaux derivatives are tame.

Remark 3 In the special case when f is a linear map L : X → Y we have

‖Lu‖k ≤ C‖u‖k+r for any k ≥ b

by applying (11) to εu/‖u‖b with sufficiently small ε > 0 and any u , 0 (increasing
the base b if necessary to ensure that ‖u‖b , 0) and using linearity of L.

It is not hard to see that any tame linear map is continuous in the Fréchet topology.
Furthermore, a linear isomorphism of Fréchet spaces which is tame and has a tame
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inverse establishes an equivalence of gradings. Consequently, in order to show that
a map f is tame it is enough to establish the estimates in (11) for any pair among the
equivalent gradings on X and Y.

Example 9 The gradings of the space of smooth sections C∞(M,E) of a bundle E
given by the uniform Ck norms, the Sobolev Hs norms or the Hölder Ck ,α norms
are equivalent.4

Example 10 A routine verification of the definitions shows that products and com-
positions of tame Fréchet maps are tame and, furthermore, any (linear or nonlinear)
partial differential operator of order r between smooth sections of vector bundles
over a compact manifold M is a tame map of degree r (cf. also Section 3 below).

Definition 6 A graded Fréchet space X is tame if there is a Banach space B such
that the identity operator on X factors through ΣB, that is

X X

ΣB

Id

L M

for some tame linear maps L : X → ΣB and M : ΣB→ X. A tame Fréchet manifold
is a Fréchet manifold M modelled on a tame Fréchet space equipped with an atlas
whose coordinate transition functions are smooth tame maps.

Example 11 Any submanifold of a tame Fréchet manifold is tame.

Example 12 Let M be a compact manifold. The Fréchet space of smooth sections of
any fibre (or vector) bundle over M is a tame Fréchet manifold.

Remark 4 Although Def. 6 looks somewhat technical, the property it captures can be
described perhaps more intuitively as the space X admitting a family of "smoothing
operators" Sθ : X → X with θ ≥ 0, that is, linear maps satisfying certain estimates
that single out a preferred grading among those defining the same topology on X.5
They can be explicitly constructed on the sequential spaces X = ΣB and shown to
satisfy for any m ≤ n the estimates

‖Sθu‖n ≤ Ce(n−m)θ‖u‖m and ‖(Id − Sθ )u‖m ≤ Ce−(n−m)θ ‖u‖n , (12)

4 These gradings are easily shown to be equivalent with the help of the Sobolev lemma.
5 Such operators (defined by convolutions with smooth functions and Fourier truncation methods)
were used in various contexts, e.g. by Nash [43], Moser [41] and Hormander [28] in the work
on isometric embeddings of Riemannian manifolds and in designing iteration schemes for solving
nonlinear partial differential equations.
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where C > 0 is a constant depending only on m and n. In turn, these estimates yield
useful interpolation inequalities6

‖u‖n−lm ≤ C‖u‖m−ln ‖u‖n−ml (13)

for any l ≤ m ≤ n with C > 0 depending on l,m and n. Such estimates are then used
to implement a rapidly converging iteration scheme (a modified Newton algorithm)
needed in the proof.

In the tame Fréchet setting we can state now the following version of the inverse
function theorem.

Proposition 2 (The Nash-Moser-Hamilton theorem) Let X and Y be tame Fréchet
spaces and let U ⊂ X be an open set. Let f : X ⊃ U → Y be a smooth tame map.
Suppose that there is an open subset V ⊂ U such that df (u) : X → Y is a linear
isomorphism for all u ∈ V whose inverse (df )−1 : V × Y → X is a smooth tame
map. Then f is locally invertible on V and the inverse is also a smooth tame map.

Proof For a detailed proof we refer to [27]. Shorter expositions with a somewhat
different emphasis can be found in [37] and [32]. �

Remark 5 The inverse function theorem may be used to solve differential equations
and in particular to find integral curves of (possibly time-dependent) vector fields on
Fréchet manifolds. Outside of Banach spaces the situation becomes much less clear
as the main tool for such purposes, namely, Banach’s contraction mapping principle,
is no longer available and examples showing that solutions may neither exist nor
be unique are not difficult to construct. However, in the tame Fréchet setting the
presence of the smoothing operators Sθ , such as those in (12), makes it possible to
first mollify the differential equation and then produce a solution by passing to the
limit with θ →∞.

2.2.2 Manifolds of maps

The next example of a Fréchet manifold is of considerable geometric interest. Let
M be a compact manifold (without boundary) and let N be a finite dimensional
manifold. Without loss of generality we may assume N to be Riemannian.

Proposition 3 The space M(M,N) of all smooth maps of M into N is an infinite-
dimensional tame Fréchet manifold.

Proof There are different ways of exhibiting a differentiable manifold structure of
this space. We sketch a proof based on an idea developed by Eells [21]. It consists
of four steps.

6 Such interpolation inequalities are well-known for C∞(M) equipped with either the Sobolev Hk

or the Hölder Ck ,α norms in (2) or (1).
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Step 1: The first objective is to find a suitable candidate for the model space. As indicated
already, this space should be isomorphic to the tangent space TfM(M,N) at each
point f in M(M,N) and it can be therefore identified with the Fréchet space
C∞

(
f −1(T N)

)
of smooth sections of the pull-back of the bundle T N to M by the

map f and topologized by the uniform norms (cf. Example 2).
Step 2: Next, in order to define local charts at f ∈ M(M,N)we pick a Riemannian metric

on N (any Riemannian metric will do) and recall that for any p ∈ N the associated
Riemannian exponential map expp : TpN → N is a local diffeomorphism near
zero inTpN onto a neighbourhood of p. Since f is continuous, f (M) is a compact
subset of N and thus the injectivity radius of the target manifold has a global lower
bound ε > 0 on f (M). Setting

U f (ε) =
{
M 3 x → exp f (x)(w(x)) : w ∈ C∞

(
f −1(T N)

)
, ‖w‖k < ε f

}
and

w → ϕ f (w) = exp f ◦w (14)

gives now a coordinate chart (U f , ϕ f ) at f .
Step 3: It remains to verify that given any points f and g in M(M,N) the coordinate

transition maps

ϕg ◦ ϕ
−1
f : ϕ f (U f ∩Ug) → ϕg(U f ∩Ug)

are of class C∞, which follows essentially from the chain rule etc. — after
localizing the transition maps to functions defined on open sets in Fréchet spaces
of smooth sections of appropriate vector bundles. This shows that M(M,N) is a
smooth Fréchet manifold.

Step 4: The fact that it is tame is an immediate consequence of the fact thatM(M,N) can
be viewed as the space of sections of the fibre bundle F = M × N over M (see
Example 12). �

The following special cases of this example introduce objects that will play an
important role in what follows.

Example 13 The set D(M,N) of all smooth diffeomorphisms between two compact
manifolds M and N or, more generally, the set E(M,N) of all smooth embeddings
of a compact manifold M into a manifold N , is a tame Fréchet manifold being an
open subset ofM(M,N).

Example 14 (The space of probability densities on T) If M is the unit circle T then
diffeomorphisms of M it can be viewed as 2π-pseudo-periodic functions, φ(x+2π) =
φ(x) + 2π such that φ′(x) > 0 for all x ∈ R. It follows that any φ′ is 2π-periodic and
satisfies the integral (fixed volume) constraint∫ 2π

0
φ′(x) dx = φ(2π) − φ(0) = 2π
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so that the set of normalized derivatives φ′/2π—which we shall denote byDens(T)
— can be viewed as the Fréchet space of smooth (probability) densities on T. Since
φ′ determines φ uniquely up to a constant in 2πZ we find that the set of smooth
orientation-preserving diffeomorphisms of T, denoted byD(T), is diffeomorphic (as
a Fréchet manifold) to the productT×Dens(T). Thus, the space of smooth probability
densities on T is a quotient space of D(T). Moreover, it is clearly contractible as a
convex open subset of a closed affine subspace (of codimension 1) of the Fréchet
space of 2π-periodic functions.

Remark 6 (Banach completions of manifolds of maps) The construction in the proof
of Prop. 3 is quite general and can be readily adapted to other function spaces,
including Banach spaces of functions with finite smoothness conditions such as
Ck(M,N) with the uniform norm (1) or the space Hk(M,N) of maps of Sobolev
class with the norm (2). In these cases the corresponding manifold of maps admits
the structure of a smooth Banach manifold. However, to carry this out one requires
that (i) the topology of the modelling space be stronger than the uniform topology7
and (ii) the functions are "well-behaved" under compositions and inverses. The
latter, in particular, leads to serious analytical obstacles concerning derivative loss
when performing various operations involving compositions of functions of finite
smoothness, since e.g. any iteration scheme (such as Newton’s algorithm, Picard’s
method of successive approximations etc.) would quickly degenerate in complete
loss of differentiability. See also Appendix 1 below.

3 Diffeomorphism groups and their quotients

Groups of diffeomorphisms of compactmanifolds arise naturally as symmetry groups
of various geometric structures (such as volume forms or symplectic forms) carried
by the underlying manifold or as configuration spaces of dynamical systems charac-
terized by infinitely many degrees of freedom. As already mentioned, we will view
them as infinite-dimensional Fréchet manifolds (in the sense of the previous section).
However, in the vast literature on the subject other function space topologies are also
used and in many cases provide a more suitable setting depending on the analytical
or geometric tasks at hand.8

3.1 Fréchet Lie groups

Definition 7 A tame Fréchet Lie group is a tame Fréchet manifold G whose group
operations of multiplication g, h 7→ g·h and inversion g 7→ g−1 are C∞ smooth tame

7 This means that in the two cases above we require k ≥ 0 or k > dim M/2, respectively.
8 For example, when studying nonlinear PDE where Hilbert space techniques may provide more
precise tools to derive the necessary a priori estimates.
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maps ofG×G andG intoG, respectively. The Lie algebra g ofG is the tangent space
TeG at the identity element e.

Despite the complications resulting from infinite dimensions Fréchet Lie groups
can be very effectively studied using standard Lie-theoretic tools. The Lie algebra g
is naturally isomorphic (as a vector space) to the space of left- (resp. right-) invariant
vector fields onG, since any element v of the algebra generates a unique vector field
V on the group by the formula V(g) = dLg(e)v where Lg(h) = g·h (resp. dRg(e)v,
where Rg(h) = h·g) is the left- (resp. right-) translation.

The group adjoint action Ad :G × g→ g ofG on its Lie algebra is defined in the
standard way as the derivative at h = e of the smooth map of G to itself given by
inner automorphisms h 7→ g·h·g−1 for any fixed group element g. Namely, we have

v 7→ Adgv = d(Lg ◦ Rg−1 )(e)v for any g ∈ G.

Since Adgv is smooth in g and linear in v, we can define similarly the algebra
adjoint action ad : g × g→ g as the derivative of the group adjoint at g = e

v 7→ aduv =
d
dt

��
t=0Adg(t)v for any v ∈ g ,

where g(t) is a smooth curve in G with g(0) = e and Ûg(0) = u. As in finite
dimensions it induces a commutation operation advw = [V,W] on the Lie algebra,
which coincides with the Lie bracket of left-invariant vector fields on the group G
generated by v,w ∈ g. (It also coincides with the negative of the Lie bracket of
right-invariant vector fields.)

Example 15 The Lie algebra of the general linear groupG = GL(n,R) of invertible
n×nmatrices is the space g = gl(n,R) of all square n×nmatrices. The corresponding
adjoint actions are given by AdgB = gBg−1 and adAB = AB − BA.

Let H be a subgroup of a Fréchet Lie groupG. Then H acts onG by left multipli-
cations

H ×G→G h,g 7→ h·g.

The orbits inG under this action are the right cosets9 of H inG, that is

H·g = {h·g : h ∈ H} for g ∈ G

and the quotient space consisting of all such cosets is denoted by H\G. Similarly,
using right multiplications one defines the quotient space of left cosetsG/H whose
elements are g·H.

9 Some authors refer to such orbits as left cosets, which may cause some confusion.
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3.2 Riemannian structures and Euler-Arnold equations on Lie groups
and quotient spaces

In this chapter we are primarily interested in those pre-Riemannian metrics on
Fréchet Lie groups G and their quotient spaces that are invariant, i.e., for which
G acts by isometries. Metrics invariant under actions given by right- (resp. left-)
multiplications are called right- (resp. left-) invariant; those invariant under both
right and left actions are called bi-invariant.

Thus, given an inner product 〈·, ·〉e on the Lie algebra g, a right-invariant metric
on the groupG can be defined simply by setting

〈V,W〉g = 〈dRg−1V, dRg−1W〉e (15)

for any vectors V,W ∈ TgG and any g ∈ G.

3.2.1 The Euler-Arnold equations

In 1960’s Arnold [5] proposed a differential-geometric framework to study the Euler
equations of ideal hydrodynamics. It is based on the observation that motions of an
ideal (that is, incompressible and non-viscous) fluid in a bounded domain M trace
out curves in the group Dµ(M) of volume-preserving diffeomorphisms of M which
correspond to geodesics of the right-invariant pre-Riemannian metric defined by the
kinetic energy of the fluid. This approach is very general and applies to numerous
partial differential equations of interest in mathematical physics and geometry. Such
equations arise within this framework through a general reduction procedure which
starts with a given geodesic system on the group to produce a dynamical system on
the tangent space at the identity. In this section we describe Arnold’s framework for
general Lie groups and homogeneous spaces.

Let G be a (finite or infinite dimensional Banach or Fréchet) Lie group which
carries a right-invariant pre-Riemannianmetric g = 〈·, ·〉 induced by an inner product
on its Lie algebra TeG as in (15). The Euler-Arnold equation on the Lie algebra
associated with the geodesic flow of g has the form

ut = −ad∗uu (16)

where u(t) is a curve in TeG and the bilinear operator ad∗ on the right-hand side is
an operator on TeG defined by

〈ad∗vu,w〉e = 〈u,advu〉e for any u, v,w ∈ g (17)

called the coadjoint operator.
When equation (16) is augmented by an initial condition

u(0) = u0 (18)
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then solutions of the resultingCauchy problem (16)-(18) describe evolution in the Lie
algebra of the dynamical system t 7→ u(t) = Ûg(t)·g−1(t) obtained by right-translating
the velocity field of the corresponding geodesic g(t) in the group G starting at the
identity e in the direction Ûg(0) = u0.

Observe that, conversely, if in turn u(t) is known then the geodesic can be obtained
by solving the Cauchy problem for the flow equation, namely

dg(t)
dt
= dRg(t)(e)u(t) , g(0) = e.

Remark 7 The Cauchy problem (16)-(18) can be rewritten in the form

d
dt

(
Ad∗g(t)u

)
= 0 , u(0) = u0 ,

where
〈Ad∗gu, v〉e = 〈u,Adgv〉e for any v ∈ TeG and g ∈ G ,

which immediately yields a conservation law

Ad∗g(t)u(t) = u0.

This last equation expresses the fact that solutions u(t) of the Euler-Arnold equation
are confined to one and the same orbit during the evolution.

Example 16 (The Rigid Body) In the important special case when G = SO(3) this
procedure yields the classical Euler equations describing rotations of a rigid body in
the internal coordinates of the body. In vector notation they have the form

d
dt

P = P ×Ω

where P is the vector of angular momentum and Ω is the vector of angular velocity
- the two are related by the so-called inertia operator of the system.

Example 17 (The Euler equations of ideal hydrodynamics) Another special case
involves the group of volume-preserving diffeomorphismsG = Dµ(M) of a compact
Riemannian manifold M — see Sect. 3.3 below. This group can be equipped with
a right-invariant metric which is essentially the fluid’s kinetic energy and which at
the identity diffeomorphism is given by the L2 inner product of vector fields on M .
In this case the Euler-Arnold equation (16) becomes the Euler equations of ideal
hydrodynamics

ut + ∇uu = −∇p , div u = 0 ,

where u is the vector field on M representing the velocity field and p is the function
on M representing the pressure in the fluid, see [5].

Example 18 (Integrable systems and circle diffeomorphisms) If the group of circle
diffeomorphismsG = D(T) is equipped with the right-invariant metric generated by
the L2 inner product
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〈u, v〉L2 =

∫
T

uv dx for any u, v ∈ TeD(T) ,

then the Euler-Arnold equation is the (scaled) inviscid Burgers equation

ut + 3uux = 0.

If the metric is generated by the Sobolev H1 inner product

〈u, v〉H1 =

∫
T
(uv + uxvx) dx

then the Euler-Arnold equation yields the Camassa-Holm equation

ut − utxx + 3uux − 2uxuxx − uuxxx = 0.

Both of these equations are well-known examples of infinite-dimensional completely
integrable systems in that they are bi-hamiltonian, possess infinitely many conserved
integrals etc., for more details see [29]; see also Sect. 4.5.3.

Remark 8 Many other conservative dynamical systems in mathematical physics also
describe geodesic flows on appropriate Lie groups. In Figure 1 we list several exam-
ples of such systems to demonstrate the range of applications of this approach. The
choice of a group G (column 1) and an energy metric 〈·, ·〉 (column 2) defines the
corresponding Euler equations (column 3). (Note that the L2 and Hs in the column
2 refer to various Sobolev inner products on vector fields in the corresponding Lie
algebra.) This list is by no means complete, and we refer to [6] for more details.

GroupG Metric 〈·, ·〉 Equation

SO(3) 〈ω, Aω〉 Euler top
E(3) = SO(3)n R3 quadratic forms Kirchhoff equation for a body in a fluid

SO(n) Manakov’s metrics n-dimensional top
D(T) L2 Hopf (or, inviscid Burgers) equation
D(T) ÛH1/2 Constantin-Lax-Majda-type equation

Virasoro L2 KdV equation
Virasoro H1 Camassa–Holm equation
Virasoro ÛH1 Hunter–Saxton (or Dym) equation
Dµ (M) L2 Euler ideal fluid
Dµ (M) H1 averaged Euler flow
Dω (M) L2 symplectic fluid
D(M) L2 EPDiff equation

Dµ (M)nTeDµ (M) L2 ⊕ L2 Magnetohydrodynamics
C∞(S1, SO(3)) H−1 Heisenberg magnetic chain

Fig. 1 Euler–Arnold equations related to various Lie groups and metrics.



22 Contents

Remark 9 (Euler-Arnold equation on quotient spaces) More generally, let G be a
Fréchet Lie group equipped with a right-invariant metric as above and let H be a
closed subgroup. The metric on G descends to an invariant (under the right action
of G) metric on the quotient H\G if and only if its projection onto the orthogonal
complement T⊥e H ⊂ TeG is bi-invariant with respect to the action of H. In particular,
if the metric onG is degenerate along the subgroup H then this condition reduces to
the metric bi-invariance with respect to the H action, see e.g., [29] and the section
below. In this case the corresponding Euler-Arnold equation is defined as before as
long as the metric on the quotient H\G is nondegenerate.

3.2.2 Quotient spaces and Riemannian submersions

Let F be a smooth fibre bundle over a Fréchet manifold M with projection π and
fibres which are modelled on a Fréchet space Y. Assume that both F and M carry
(possibly weak) Riemannian metrics and let Y⊥ denote the orthogonal complement.
The projection π : F→ M defines an (infinite-dimensional)Riemannian submersion
if dπ |Y⊥ is an isometry at each point of F.

In particular, if H is a closed subgroup of a Fréchet Lie groupG equipped with a
right-invariant (possibly weak) Riemannian metric then the following general result
characterizes those metrics that descend to the base manifold of right cosets.

Proposition 4 A right-invariantmetric 〈·, ·〉 onG descends to a right-invariantmetric
on the quotient space H\G if and only if the inner product 〈·, ·〉e restricted to the
orthogonal complement T⊥e H is bi-invariant with respect to the action of H, that is

〈u,adwv〉e + 〈adwu, v〉e = 0 (19)

for any u, v ∈ T⊥e H and any w ∈ TeH.

Proof The proof repeats, with obvious modifications, the arguments in the finite-
dimensional case, see [30]. See also [14]. �

Example 19 (Circle diffeomorphisms and the periodic Hunter-Saxton equation) Let
G be the group of circle diffeomorphisms D(T) from Example 14 and let H ' T be
the subgroup of rotations. EquipGwith a right-invariant metric which at the identity
is given by the (homogeneous) Sobolev H1 inner product

〈u, v〉 ÛH1 =

∫
T

uxvxdx u, v ∈ TeD(T) (20)

The tangent space to the quotient space Dens(T) at the identity coset [e] can be
identified with the space of smooth periodic mean-zero functions and the Euler-
Arnold equation for the geodesic flow of the metric (20) (right-translated to the
tangent space at the identity) is the completely integrable Hunter-Saxton equation

utxx + 2uxuxx + uuxxx = 0 , (21)
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see [29]. We shall considerably generalize this example later on.

3.3 Diffeomorphism groups as Fréchet manifolds and Lie groups

Our principal examples are groups of diffeomorphisms and their quotient spaces.
In the sequel we shall always assume that all diffeomorphisms are orientation pre-
serving. Let G = D(M) denote the set of all smooth diffeomorphisms of a com-
pact n-dimensional manifold M . As an open subset of the tame Fréchet manifold
M(M,M) it is itself a smooth tame Fréchet manifold. Its model space (identified
with the tangent space g = TeD(M) at the identity diffeomorphism e) is just the
space C∞(M,T M) of all smooth vector fields on M .

The group operations on D(M) are given by compositions η, ξ 7→ c(η, ξ) = η ◦ ξ
and inversions η 7→ i(η) = η−1 of diffeomorphisms. The group adjoint action is
given by the change of coordinates map Adϕv = ϕ∗v ◦ ϕ−1 and the algebra adjoint is
the standard Lie derivative advw = Lvw = [v,w] of vector fields on M .

Proposition 5 Let M be a compact manifold. The set D(M) of all diffeomorphisms
of M is a smooth tame Fréchet Lie group.

Proof We already noted that D(M) is a tame Fréchet manifold. To show that the
composition map c(η, ξ) is smooth we need to compute its derivatives on the product
manifold D(M) ×D(M). If t → η(t) is a smooth curve through η with the tangent
vector ∂tη(0) = V ∈ TηD and s→ ξ(s) is a curve through ξ with ∂sξ(0) = W ∈ TξD,
then applying the rules of calculus from Sect. 2 we find that the derivative at t = s = 0
is the sum of its two partial derivatives

dc(η, ξ)(V,W) = V ◦ ξ + Dη ◦ ξ ·W ,

which shows that c(η, ξ) is differentiable. Existence of the higher order differentials
follows similarly.

To show that c(η, ξ) is tame it suffices to work in local charts on D(M) and
establish tame estimates (11) for the local representatives of the diffeomorphisms
satisfying ‖η‖1, ‖ξ‖1 ≤ 1 where ‖·‖k is any one of the equivalent gradings of the
model space C∞(M,T M) given by the Hölder Ck ,α, the Sobolev Hk , or the uniform
Ck norms. For example, we have

‖η ◦ ξ‖0 = sup
x
|η ◦ ξ(x)| ≤ ‖η‖C1 = ‖η‖1 ≤ 1.

Furthermore, for any k ≥ 1 successive applications of the chain rule together with
the interpolation inequalities (13) for the uniform norms yield
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‖η ◦ ξ‖k =
∑
|α | ≤k

‖Dα(η ◦ ξ)‖0 ≤

k∑
l=0

l∑
j=0

∑
i1+· · ·+i j=l

Cl,i1 ,...,il ‖η‖Cl ‖ξ‖Ci1 · · · ‖ξ‖Cil

≤ Ck

k∑
l=0

(
‖η‖Cl ‖ξ‖C1 + ‖η‖C1 ‖ξ‖Cl

)
‖ξ‖l−1
C1

≤ Ck

(
1 + ‖η‖Ck + ‖ξ‖Ck

)
.

Thus, the composition map satisfies a tame estimate of degree 0 and base 1. Since
all of its Gateaux derivatives are linear combinations of compositions and products
of derivatives of η and ξ, it follows that c(η, ξ) is a smooth tame map.

Turning to the inversion map we first note that differentiating in t the identity
η−1(t) ◦ η(t) = e and evaluating at t = 0 gives

di(η)V = −Dη−1 · V ◦ η−1 = −(Dη)−1 ◦ η−1 · V ◦ η−1.

This shows that i(η) is differentiable and, in fact, smooth as a map from D(M) to
itself, since all the higher differentials are computed analogously. Showing that i(η)
is a tame map involves once again local charts and successive applications of the
chain rule and interpolation estimates in a manner similar to that for the composition
map. For further details we refer to [27]. �

The group of diffeomorphismsD(M) has several important subgroups. Of partic-
ular importance is the stabilizer subgroup of the Riemannian volume form µ ∈ ΩnM ,
namely, the group of volume-preserving diffeomorphisms

Dµ(M) =
{
η ∈ D(M) : η∗µ = µ

}
where η∗µ = Jacµη µ and the Jacobian is computed with respect to the Riemannian
reference volume µ. The tangent space at the identity map e consists of divergence-
free vector fields on M , that is

TeDµ(M) =
{
u ∈ TeD(M) : divµu = 0

}
,

which is evident by differentiating the identity η∗t µ = µ at t = 0 to get

0 =
d
dt

���
t=0
η∗t µ = η

∗
t

(
L dηt

dt ◦η
−1
t
µ
)
= divµu ,

where t 7→ ηt is a curve of volume-preserving diffeomorphisms issuing from e in
the direction u.

Proposition 6 The group Dµ(M) of smooth volume-preserving diffeomorphisms of
a compact Riemannian manifold M is a closed tame Fréchet Lie subgroup ofD(M).

Proof Since the defining pullback condition is nonlocal, constructing local charts
for Dµ(M) is more complicated than for D(M). It will be sufficient to describe such
a chart near the identity. Let ϕe be the diffeomorphism from a neighbourhoodU of
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the zero section in C∞(M,T M) to a neighbourhood of e in D(M) defined in (14).
Consider the pullback map

φµ : u 7→ ϕe(u)∗µ/µ for u ∈ U ⊂ C∞(T M).

Writing it out in local charts and using the estimates on compositions and products
shows that φµ is a tame nonlinear PDO of order 1 in u that maps smoothly to C∞(M)
and whose differential at zero is

w 7→ dφµ(0)(w) = Lwµ/µ = divµ w , (22)

where divµ is the divergence operator of the Riemannian mertic on M . Using the
Helmholtz-Weyl-Hodge decomposition of vector fields into L2-orthogonal compo-
nents C∞(T M) = div−1

µ (0) ⊕ ∇C∞(M) (see e.g., [33] or [40]) and the natural identi-
fication10 of ∇C∞(M) with the closed subspace C∞0 (M) of mean-zero functions on
M we now define a map

Φµ : u 7→
(
v, φµ(u) − 1

)
for u ∈ U ⊂ C∞(T M)

on the product of Fréchet spaces div−1
µ (0) ⊕ C∞0 (M). The task of constructing a local

chart at e for Dµ(M) reduces now to showing that Φµ is invertible near the zero
section. Its derivative at u = v + ∇ f is readily computed to be

dΦµ(u)(w,g) =
(
w, dφµ(v + ∇ f )(w + ∇g)

)
w ∈ div−1

µ (0), g ∈ C∞0 (M).

In particular, if v = 0 and f = 0 then dΦµ(0)(g,w) = (w,divµ(w + ∇g)) = (w,∆g)
so that its second component is an elliptic operator, which remains elliptic under
suitably small perturbations of v and f . It follows that the derivative of Φµ is a
linear isomorphism with tame inverse at all points near u = 0 and, consequently, it is
locally invertible by the Nash-Moser-Hamilton theorem (Prop. 2). In order to obtain
a chart near e ∈ Dµ(M) it suffices now to compose Φ−1

µ with the local chart ϕe for
D(M) and set ϕe ◦Φ−1

µ

��
V∩(0⊕div−1(0)) whereV is some neighbourhood of 0 on which

Φµ is a diffeomorphism.
Finally, observe thatDµ(M) is a subgroup whose group operations enjoy the same

regularity properties as those of the ambient groupD(M). This shows thatDµ(M) is
a tame Fréchet Lie group. �

Remark 10 A subtle but important point to keep in mind when constructing smooth
tame families of elliptic inverses is that to make it work one needs to make a
judicious choice of an appropriate grading (e.g., using the Ck ,α Hölder or the Hs

Sobolev norms) for the Fréchet spaces involved in the argument. The reason for this
is that elliptic estimates do not hold in certain functional settings, such as e.g., the
uniform Ck spaces.

10 For example, using a special case of de Rham’s theorem which states that a closed form is exact
if all of its periods vanish, see e.g., [55].
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Remark 11 As remarked in 2.2.2, slightly modifying the procedure described there
it is possible to equip D(M) with the structure of a Banach (or Hilbert) manifold,
e.g., by enlarging it to Sobolev Hs class diffeomorphisms Ds(M) with s > n/2 + 1
or Hölder C1,α diffeomorphisms D1,α(M) with 0 < α < 1. Both options are very
convenient from the point of view of analysis11 - this is, once again, in contrast to
the Ck case where this procedure seems to fail, as it depends crucially on the Hodge
decomposition theorem.

Remark 12 The theory of (infinite-dimensional) Banach Lie groups is well developed
and goes back to Birkhoff [12], see also [13]. However, repeating the construction
in the proof of Prop. 5 immediately runs into serious obstacles, since compositions
with diffeomorphisms on the left (i.e., left translation maps in the group), as well
as the Lie bracket of vector fields on M (i.e., the commutator in the "Lie alge-
bra"), lose derivatives with respect to both topologies. Consequently, neitherDs(M)
nor D1,α(M) is a Banach Lie group in Birkhoff’s sense. Of course, this problem
disappears if the modelling space is a Fréchet space of smooth functions.

Example 20 Consider the groupD(T) of smooth diffeomorphisms of the unit circle.
Any vector field u on the circle, viewed as an element of the Lie algebraTeD(T), gives
rise to a one-parameter subgroup φt (x) obtained as a solution of the corresponding
flow equation dφt/dt = u ◦ φt subject to the initial condition φ0(x) = x. The Lie
group exponential map at the identity element e inD(T) is now defined in complete
analogy to the finitie-dimensional case as a "time-one map" by the formula

expe : TeD(T) → D(T) , expe u = φ1.

It is not hard to see that this map is continuous in the Fréchet (or any sufficiently
strong Banach) topology on D(T), but it is not of class C1. In fact, observe that
even though its derivative at t = 0 is d expe(0) = id, the map fails to be invertible
in any neighbourhood of the identity e.12 This "bad" behaviour of the (Lie group)
exponential map onD(T) stands in sharp contrast to the case of the classical, as well
as Banach, Lie groups such as loop groups. We refer to [44], [27] or [26] for further
details.

3.4 The quotient space of probability densities

A fixed volume form on a compact n-manifold M can be used to define a natural
fibration ofD(M) over the Fréchet manifold of smooth positive normalized measures
on M . To describe the latter, recall that any volume form ν defines a Borel measure,
which in any coordinate chart

(
U, x = (x1, . . . , xn)

)
on M has the form dν = ρU (x)dx

11 See Appendix 1.
12 Note that in Prop. 2 invertibility of the derivative is assumed to hold in a small neigbourhood
rather than at a single point.
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where ρU (x) is a positive C∞ function and dx = dx1 . . . dxn is the Lebesguemeasure
on Rn. Its expressions in different charts are related by Jacobian functions

ρU (x) = | det(∂ηi/∂x j)|ρV ◦ η(x) , η ∈ D(U,V) ,

which, in the geometric language, represent the cocycle of transition functions of
the corresponding line bundle of volume forms over M . Cross-sections of this vector
bundle are called densities and can be identified with smooth measures on M . If
the manifold carries a Riemannian metric g then there is a canonical choice of a
positive density on M , which in a local chart is given by

√
det g(x). In this case the

corresponding volume form µ can be used as a fixed reference measure on M .
We set

Dens(M) =
{
ν ∈ ΩnM : ν > 0,

∫
M

dν = 1
}
, (23)

whereΩnM denotes the tame Fréchet space of smooth n-forms on M (i.e., the cross-
sections of the one-dimensional vector bundle ΛnT∗M). This set is clearly open and
connected. In fact, if ν and λ are in Dens(M) then so is their convex combination
tν + (1 − t)λ where 0 ≤ t ≤ 1. Of course, we can also think of Dens(M) as an open
convex subset of positive density functions ρ > 0 in the Fréchet manifold of C∞
functions with average value 1 on M , so that we can write ν = ρµ.

The tangent space at any ν ∈ Dens(M) is

TνDens(M) =
{
β ∈ ΩnM :

∫
M

dβ = 0
}
, (24)

which follows at once by differentiating the condition in (23).
Moser [42] proved that for any two volume forms ν and λ on a compact manifold

M with
∫
M

dv =
∫
M

dλ there is a smooth diffeomorphism ξ such that ξ∗ν = λ.
He did this by constructing a map χµ from the space of densities Dens(M) to the
diffeomorphismgroupD(M)which is a smooth inverse of the pullbackmap ξ → ξ∗µ.
Subsequently, Ebin and Marsden [20] observed thatD(M) is diffeomorphic13 to the
productDµ(M) ×Dens(M), as verified directly upon setting (η, ν) 7→ ξ = η ◦ χµ(ν)
with inverse ξ 7→

(
ξ ◦ χµ(ξ

∗µ)−1, ξ∗µ
)
. Reformulating these somewhat gives

Proposition 7 The group of diffeomorphismsD(M) is a smooth tame Fréchet princi-
pal bundle overDens(M)with fibreDµ(M) and projection given by the pullback map
π(ξ) = ξ∗µ. In particular, there is a short exact sequence of tame Fréchet spaces

0→ TeDµ(M) → TeD(M) → TµDens(M) → 0

which splits in a canonical way.

Proof This is essentially an immediate consequence of the bundle structure theorem
since Moser’s map χe defines a (global) cross-section of Dµ(M) in D(M), cf. [52].
For details see Hamilton’s paper [27]. �

13 In particular, Dµ (M) is a deformation retract of D(M), since Dens(M) is convex.
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Observe that the action of the diffeomorphism group on Dens(M) is transitive
(this is Moser’s result above) and the fibres of the bundle D(M) → Dens(M) are
precisely the right cosets of the subgroup Dµ(M) in D(M), that is

Dens(M) ' Dµ(M)\D(M) =
{
[ξ] = Dµ ◦ ξ : ξ ∈ D(M)

}
,

see Figure 2. This fact will play an important role below.

Fig. 2 The fibration of D(M) with fiber Dµ (M) determined by the reference density µ together
with the L2-metric.

Remark 13 (Right cosets versus left cosets) In a similar manner one can consider the
quotient space of densities as a space of left cosets and identify

Dens(M) ' D(M)/Dµ(M) =
{
[ζ] = ζ ◦Dµ(M) : ζ ∈ D(M)

}
.

It is clear that in general a right cosets need not be a left coset. Nonetheless many
constructions and arguments concerning the former apply, mutatis mutandis, to the
latter as well.

It is interesting to note that identifyingDens(M) with left cosets provides the set-
ting for theWasserstein (or Kantorovich-Rubinstein) geometry of Optimal Transport.
See Appendix 2 below.
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4 The Fisher-Rao metric in infinite dimensions

As configuration spaces of various physical systems diffeomorphism groups often
come equipped with natural (pre-) Riemannian structures. Historically, of most
interest were those structures related to the L2 inner product corresponding to the
kinetic energy of the system - the prime example being hydrodynamics of ideal
fluids. However, in recent years there appeared many new examples from analysis,
to geometry, to mathematical physics where the appropriate Riemannian structures
came from higher order Sobolev inner products, see Example 5.

In this sectionwe shall show that the Fisher-Rao (information)metric, which plays
a fundamental role in geometric statistics, is closely related to an H1-type Sobolev
inner product of the space of diffeomorphisms. The approach developed below places
information geometry squarely within the general differential-geometric framework
for diffeomorphism groups envisioned by Cartan, Kolmogorov and Arnold.

4.1 A right-invariant homogeneous H1 Sobolev metric on D(M)

We shall continue to assume that M is an n-dimensional compact Riemannian
manifold without boundary whose volume form is normalized so that µ(M) = 1.
The triple (M,B, µ) where B is the σ-algebra of Borel sets in M will be the fixed
background sample space and the Fréchet manifold of right cosets Dens(M) =
Dµ(M)\D(M) will serve as an infinite-dimensional statistical model whose points
are (smooth) probabilitymeasures14 on M that are absolutely continuouswith respect
to µ. We shall equip the principal bundle D(M) over Dens(M) with the structure of
a Riemannian submersion. To that end, observe that the condition stated in Prop. 4
is precisely what one needs.

Consider the homogeneous Sobolev H1 inner product on the Fréchet Lie algebra
of divergence free vector fields on M . Define the corresponding (degenerate) right-
invariant H1 metric on the total space D(M) using (15), namely

g ÛH1 (V,W) = 〈V,W〉 ÛH1 =
1
4

∫
M

div v · divw dµ , V,W ∈ TηD(M) , (25)

such that V = v ◦ η and W = w ◦ η where v,w ∈ TeD(M) and η ∈ D(M).
Clearly, the metric (25) generalizes the one-dimensional case (20). Moreover, it

satisfies the condition (19) and therefore descends to a (non-degenerate) metric on
Dens(M). The attendant geometry is particularly remarkable. As we will see below,
the space of densities Dens(M) viewed as the space of right cosets equipped with
this metric is isometric to a subset of the unit sphere in the Hilbert space and its
Riemannian distance coincides with the spherical Hellinger distance. Furthermore,

14 Alternatively, they are (smooth) density functions given by the corresponding Radon-Nikodym
derivatives.
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(25) is related to the so-called Bhattacharyya coefficient (affinity) in probability and
statistics.

4.2 The square root map

We begin by constructing a map between the quotient space of right cosetsDens(M)
and a subset of the unit sphere in the Lebesgue space of square integrable functions
on M with induced metric

S∞
L2 =

{
u ∈ L2(M, dµ) :

∫
M

|u|2dµ = 1
}
.

As before we let Jacµη denote the Jacobian of η with respect to µ.
Theorem 1 (Isometry theorem) The map

Ψ : D(M) → L2(M, dµ) ξ 7→ Ψ(ξ) =
√

Jacµξ

defines an isometry from the space of densities Dens(M) = Dµ(M)\D(M) with the
ÛH1 metric (25) to a subset of the unit sphere S∞

L2 ⊂ C
∞(M) ∩ L2(M, dµ) with the

standard L2 metric.
Proof First, note that the Jacobian of any orientation preserving smooth diffeomor-
phism is a (strictly) positive smooth function. Since we are viewingDens(M) as the
space of right cosets with the projection π given by the pullback map (cf. Prop. 7),
given any ξ in D(M) and η in Dµ(M) we have

(η ◦ ξ)∗µ = π(η ◦ ξ) = π(ξ) = ξ∗µ ,

which implies that Jacµ(η ◦ ξ) = Jacµξ. Furthermore, using the change of variable
formula we find ∫

M

Ψ
2(ξ) dµ =

∫
M

Jacµξ dµ = µ(M) = 1.

From the above it follows that Ψ descends to a well-defined map from the quotient
space Dens(M) into the unit sphere in L2(M, dµ).

Next, if Jacµξ = Jacµζ for some ξ and ζ in D(M) then we have (ξ ◦ ζ−1)∗µ = µ
and, consequently, we find that Ψ is injective.

Finally, differentiating the identity Jacµξ µ = ξ∗µwith respect to ξ in the direction
V ∈ TξD(M) we obtain

dξJacµ(V) = divµ(V ◦ ξ−1) ◦ ξ Jacµξ.

Recall that tangent vectors V , W at any ξ ∈ D(M) can be always represented in the
formV = v◦ξ andW = w◦ξ where v,w ∈ TeD(M). Thus, applying Fréchet calculus
as before, changing variables and using (25), we compute
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〈dξ (Ψ ◦ π)(V), dξ (Ψ◦)(W)〉L2 =
1
4

∫
M

(divµv ◦ ξ) · (divµw ◦ ξ) Jacµξ dµ

=
1
4

∫
M

divµv · divµw dµ

= 〈v,w〉 ÛH1

This shows that Ψ is an isometry. �

Remark 14 If s > n/2+1 then the mapΨ defines a diffeomorphism from the Sobolev
completionDs

µ(M)\D
s(M) onto a subset of S∞

L2 ∩ Hs−1(M) of positive functions on
M and the above proof extends with minor modifications. The fact that any positive
function in S∞

L2 ∩ Hs−1(M) lies in the image of Ψ follows directly from Moser’s
lemma, whose generalization to the setting of Sobolev Hs spaces can be found in
[20]; see also Appendix 1.

4.3 The infinite-dimensional Fisher-Rao metric on Dens(M)

The appearance of diffeomorphism groups in our formulation of the infinite-
dimensional generalization of information geometry should not be entirely surpris-
ing. In some sense it could be discerned from various results in the finite-dimensional
setting such as invariance properties of the Fisher information with respect to suffi-
cient statistics15 — in particular, with respect to invertible mappings of the sample
space M .

Attempts to find conceptually natural and useful approaches to mathematical
statistics go back to the pioneering work of Fisher, Rao and Kolmogorov. Their
ideas were subsequently further developed by Chentsov, Morozova, Efron, Amari,
Barndorff-Nielsen, Lauritzen, Nagaoka among others; see e.g., [15], [16], [23], [1],
[3], [4]. Along the way various infinite-dimensional generalizations were also con-
sidered by David [17], Friedrich [24], Pistone and Sempi [46], Gibilisco and Pistone
[25], Ay, Jost, Le and Schwachhofer [7]. For an informative historical discussion, as
well as for an excellent introduction to the field and its wide range of applications,
we refer to the recent book of Amari [2], as well as a survey paper of Morozova and
Chentsov [16].

In the classical approach one considers finite dimensional families of probability
density functions on M whose elements are (smoothly) parametrized by open subsets
Σ of the euclidean space

S =
{
ρ = ρs1 ,...,sk ∈ Dens(M) : (s1, . . . , sk) ∈ Σ ⊂ Rk

}
.

Points of M are viewed as random samples from some (typically unknown) dis-
tribution ρs1 ,...,sk where s1, . . . , sk are certain statistical parameters. When equipped
with the structure of a smooth manifold the set S is referred to as a k-dimensional

15 This suggests a possibility of further generalizations, which we will not pursue here.
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statistical model with s1, . . . , sk playing the role of local coordinates. Rao [47] in-
troduced further structure by defining at each point a k × k symmetric matrix

{gF }i j =

∫
M

∂ log ρ
∂si

∂ log ρ
∂sj

ρ dµ 1 ≤ i, j ≤ k , (26)

which in the positive definite case defines a Riemannian metric gF on S called the
Fisher-Rao (information) metric. The significance of this metric for mathematical
statistics was immediately recognized by mathematicians, see e.g., [15].

In our setting we shall regard a statistical modelS as a k-dimensional Riemannian
submanifold of the Fréchet manifold of smooth probability densities Dens(M) on
the underlying compact n-dimensional sample space manifold M . The next result
shows that the metric gF defined via (26) is in fact the same as the metric induced
on S by the homogeneous Sobolev metric defined in the previous section on the full
diffeomorphism group D(M).
Theorem 2 The right-invariant Sobolev ÛH1 metric (25) on the Fréchet Lie group
D(M) of diffeomorphisms of a compact Riemannianmanifold M descends to a (weak)
Riemannian metric g∞F on the quotient space of right cosetsDens(M). Furthermore,
it coincides (up to a constant multiple) with the standard Fisher-Rao metric gF on
any statistical submanifold S.

We shall refer to g∞F above as the infinite-dimensional Fisher-Rao metric.

Proof First, we check that the homogeneous Sobolev ÛH1 metric satisfies the required
descent condition of Prop. 4. That is, we need to verify the formula (19) forG = D(M)
and H = Dµ(M) where adwv = [v,w] is the Lie bracket of vector fields on M . Given
any vector fields u, v,w with divµw = 0, we compute

〈adwv,u〉 ÛH1 + 〈v,adwu〉 ÛH1 = −
1
4

∫
M

(
divµ[w, v] divµu + divµ[w,u] divµv

)
dµ

= −
1
4

∫
M

{(
〈w,∇divµv〉 − 〈v,∇divµw〉

)
divµu

+
(
〈w,∇divµu〉 − 〈u,∇divµw〉

)
divµv

}
dµ

=
1
4

∫
M

divµw · divµv · divµu dµ = 0.

This shows that the homogeneous Sobolev (degenerate) metric (25) on D(M) de-
scends to a non-degenerate metric on the quotient Dµ(M)\D(M).

For the second statement it will be convenient to carry out the calculations
directly in the group D(M). Given any vectors v,w in TeD(M) consider a two-
parameter family of diffeomorphisms s1, s2 7→ ξs1 ,s2 in D(M) such that ξ(0,0) = e
with ∂ξ/∂s1(0,0) = v and ∂ξ/∂s2(0,0) = w. Their right-translations v ◦ ξs1 ,s2 and
w ◦ ξs1 ,s2 are the corresponding variation vector fields along the surface defined by
the family.

If ρ is the Jacobian of ξs1 ,s2 computed with respect to the reference volume µ then
(26) assumes the form
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{gF }(v,w) =

∫
M

∂

∂s1

(
log Jacµξs1 ,s2

) ∂

∂s2

(
log Jacµξs1 ,s2

)
Jacµξs1 ,s2 dµ.

Since
∂

∂s1

(
Jacµξs1 ,s2

)
= divµv ◦ ξs1 ,s2 · Jacµξs1 ,s2

and similarly for the other partial derivative, using these formulas and changing
variables in the integral we now obtain

{gF }(v,w) =

∫
M

∂
∂s1

Jacµξs1 ,s2
∂
∂s2

Jacµξs1 ,s2

Jacµξs1 ,s2

���
s1=s2=0

dµ

=

∫
M

(divµv ◦ ξ)·(divµ ◦ ξ) Jacµξ dµ

=

∫
M

divµv · divµw dµ

= 4〈v,w〉 ÛH1 = g ÛH1 (v,w) ,

which proves the theorem. �

As an immediate consequence we have

Corollary 1 The space of densities Dens(M) = Dµ(M)\D(M) equipped with the
infinite-dimensional Fisher-Rao metric g∞F has positive constant curvature 1/µ(M).

Proof Since Ψ is an isometry by Theorem 1 the corollary follows directly from the
previous theorem and the fact that the sectional curvature of a sphere in a Hilbert
space of radius r > 0 is precisely 1/r2. �

It is perhaps worth noting that if the volume of M grows to infinity then the
above corollary implies that the space of densitiesDens(M) becomes "flatter" in the
Fisher-Rao metric g∞F .

There is an analogue for g∞F of the well-known Chentsov uniqueness theorem
for the Fisher-Rao metric g∞F , according to which the former is essentially unique
among those metrics on D(M) that descend to the base Dens(M) of right cosets.

Theorem 3 Let M be a compact Riemannian manifold of dimension n ≥ 2 without
boundary. Any (weak) Riemannian right-invariant metric on D(M) which descends
to the quotient space of right cosets Dens(M) = Dµ(M)\D(M) is a multiple of g∞F .

Proof As in the finite-dimensional case this is essentially a consequence of invari-
ance properties under the action of diffeomorphisms. A concise proof can be found
in [9]. �
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4.4 The metric space structure of the space of densities

Consider two smooth measures λ and ν on M that are absolutely continuous with
respect to the reference measure µ and have the same total volume µ(M). Let dλ/dµ
and dν/dµ be the respective Radon-Nikodym derivatives.

Theorem 4 The Riemannian distance between λ and ν induced by the infinite-
dimensional Fisher-Rao metric g∞F on Dens(M) is

distg∞F (λ, ν) =
√
µ(M) arccos

(
1

µ(M)

∫
M

√
dλ
dµ

dν
dµ

dµ
)
. (27)

Equivalently, this distance can be computed as the Riemannian distance of (25)
between two diffeomorphisms ξ and ζ in D(M) which map the volume form µ to λ
and ν, respectively, from the formula

dist ÛH1 (ξ, ζ) =
√
µ(M) arccos

(
1

µ(M)

∫
M

√
Jacµξ · Jacµζ dµ

)
.

Proof Let f 2 = dλ/dµ and g2 = dν/dµ. If λ = ξ∗µ and ν = ζ∗µ then using the
isometry given by the square root map Ψ of Theorem 1 it suffices to compute the
distance between the functions Ψ(ξ) = f and Ψ(ζ) = g considered as points on
the sphere S∞

L2 (r) of radius r =
√
µ(M) with the metric induced from L2(M, dµ).

However, since geodesics of this metric are precisely the great circles, it follows that
the length of the corresponding arc joining f and g is

r arccos
(
r−2

∫
M

f g dµ
)
,

which is formula (27). �

Recall that the diameter of a Riemannian manifold is defined as the supremum of
the Riemannian distances between its points. Thus, in particular

diamg∞F

(
Dens(M)

)
= sup

{
distg∞F (λ, ν) : λ, ν ∈ Dens(M)

}
.

Corollary 2 The diameter ofDens(M) with the metric g∞F equals π
√
µ(M)/2, i.e., it

is a quarter of the circumference of the sphere in L2(M, dµ) of radius
√
µ(M).

Proof The upper bound follows easily from the formula (27) since the argument of
the arccos function is always between 0 and 1. To see that it can be arbitrarily close
to 0 it suffices to choose the functions f and g as in the proof of Theorem 4 with
supports in disjoint subsets. �

The Riemannian distance of the metric g∞F on Dens(M) is closely related to the
Hellinger distance. Recall that the latter is defined to be
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dist2H (λ, ν) =
∫
M

(√
dλ/dµ −

√
dν/dµ

)2
dµ

for any probability measures λ and ν on M which are absolutely continuous with
respect to µ. It is readily checked that if λ and ν coincide then distH (λ, ν) = 0 and
if they are mutually singular then distH (λ, ν) =

√
2. Of course, when comparing it

with (27) one needs to normalize all the measures involved.

Remark 15 The Hellinger distance is also related to the so-called Bhattacharyya
affinity BC by the formula

dist2H (λ, ν) = 2
(
1 − BC(λ, ν)

)
see e.g., [15] for more information.

The following two corollaries can be readily verified using the isometry property
of Theorem 1.

Corollary 3 The Hellinger distance between two normalized densities dλ = f 2dµ
and dν = g2dµ is equal to the distance in the Hilbert space L2(M, dµ) between the
functions f and g considered as points on the unit sphere S∞

L2 .

Corollary 4 The Bhattacharyya coefficient BC(λ, ν) of two normalized densities
dλ = f 2dµ and dν = g2dµ is equal to the inner product of the corresponding
(positive) functions f and g in L2(M, dµ), that is BC(λ, ν) =

∫
M

f g dµ.

Let 0 < α < π/2 denote the angle between two vectors f and g of the unit sphere
in L2(M, dµ). In this case we have

distH (λ, ν) = 2 sinα/2 and BC(λ, ν) = cosα

while
distg∞F (λ, ν) = arccos BC(λ, ν).

We can therefore refer to the Riemannian distance of the infinite-dimensional Fisher-
Rao metric on Dens(M) as the spherical Hellinger distance; see Figure 3.

4.5 Geodesic equations as the Euler-Arnold equations and complete
integrability

For a deeper insight into the infinite-dimensional analogue g∞F of the Fisher-Rao
metric on Dens(M) we can turn to the study of its geodesics. Since the metric is
invariant the associated geodesic equation can be derived via a reduction procedure
as an Euler-Arnold equation on the quotient space Dµ(M)\D(M). In fact, it will be
convenient to work with the right-invariant Sobolev ÛH1 metric "upstairs" on the total
space D(M) of all diffeomorphisms.
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α

0

λ ν
µ

distH (λ, ν)

distg∞F (λ, ν)

r = 1

S∞
L2 ⊂ L2(M , dµ)

Fig. 3 TheHellinger distance distH (λ, ν) and the spherical Hellinger distance distg∞F (λ, ν) between
two densities dλ = f 2dµ and dν = g2dµ in S∞

L2 . The thick arc represents the image of D(M)
under the square root map Ψ.

Theorem 5 The Euler-Arnold equation of the homogeneous metric (25) has the form

∇divµut + divµu·∇divµu + ∇〈u,∇divµu〉 = 0 (28)

or, equivalently,

ht + 〈u,∇h〉 +
1
2

h2 = −
1

2µ(M)

∫
M

h2dµ (29)

where h = divµu.

Proof Using the general Euler-Arnold equation and Remark 9 of Sec. 3.2.1 we only
need to compute the coadjoint operator with respect (25). On the one hand, from
(25) for any u, v and w in TeD(M) we have

〈ad∗vu,w〉 ÛH1 = −
1
4

∫
M

〈∇divµad∗vu,w〉dµ.

On the other hand, using (17) we compute
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〈ad∗vu,w〉 ÛH1 = 〈u,advw〉 ÛH1 =
1
4

∫
M

divµu·divµ[v,w] dµ

=
1
4

∫
M

(
divµu·〈v,∇divµw〉 − divµu·〈∇divµv,w〉

)
dµ

= −
1
4

∫
M

divµ
(
divµu·v

)
·divµw dµ −

1
4

∫
M

〈divµu·∇divµv,w〉dµ

=
1
4

∫
M

〈
∇divµ(divµu·v) − divµu·∇divµv,w

〉
dµ.

Since w is an arbitrary vector field on M , comparing the two integral expressions
above we obtain

∇divµad∗vu = −∇divµ(divµu·v) + divµu·∇divµv
= −∇〈∇divµu, v〉 − ∇(divµu·divµv) + divµu·∇divµv.

Substituting into (16) yields the desired Euler-Arnold equation (28). �

Observe that in the one-dimensional case when M = T differentiating equation
(29) with respect to x gives the Hunter-Saxton equation (21) of Example 19.

4.5.1 The Cauchy problem: explicit solutions

The question of wellposedness of the Cauchy problem for a nonlinear evolution
equation subject to an appropriate initial data involves constructing a unique solution
which belongs to a given function space, satisfies both the equation and the initial
condition, and depends at least continuously on the data. In the case of the general
Euler-Arnold equation (16) this question can be studied either by working directly
with the partial differential equation or indirectly by reformulating it in terms of the
associated geodesic flow in the group (or the homogeneous space). One advantage
of the latter approach is that in a suitable Banach space setting (such as Sobolev
Hs with s > n/2 + 1 or Hölder C1,α with 0 < α < 1) the geodesics can be often
constructed using Banach-Picard iterations as solutions of an ordinary differential
equation. We point out however that the two formulations of the Cauchy problem
(one in the Lie algebra and the other in the group) are in general not equivalent since
in the latter case the data-to-solution map is typically smooth, while in the former it
is at best continuous in any reasonable Banach space topology.

As it turns out, in our case we can solve the Euler-Arnold equations of Thm. 5 by
deriving explicit formulas for the corresponding solutions.

Theorem 6 Let h = h(t, x) be the solution of (29) with the initial condition

h(0, x) = divµu0(x). (30)

Let t 7→ ξ(t) be the flow of the corresponding velocity field u = u(t, x), that is
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d
dt
ξ(t, x) = u(t, ξ(t, x)) , ξ(0, x) = x.

Then, we have

h(t, ξ(t, x)) = 2κ tan
(
arctan

divµu0(x)
2κ

− κt
)
, (31)

where κ2 =
1

4µ(M)

∫
M

(divµu0)
2dµ. (32)

Furthermore, the Jacobian of the flow is

Jacµ(ξ(t, x)) =
(
cos κt +

divµu0(x)
2κ

sin κt
)2
. (33)

Proof If φ(t, x) is a smooth real-valued function then the chain rule gives

d
dt
φ(t, ξ(t, x)) =

∂φ

∂t
(t, ξ(t, x)) +

〈
u(t, ξ(t, x)),∇φ(t, ξ(t, x))

〉
.

From this formula and from (29) we obtain an equation for φ = h ◦ ξ, namely

dφ
dt
+

1
2
φ2 = −C(t) (34)

where C(t) = (2µ(M))−1
∫
M

h2dµ. Observe that C(t) is in fact independent of the
time variable t since

µ(M)
dC
dt
(t) =

∫
M

hhtdµ =
∫
M

divµu·divµutdµ

= −

∫
M

〈u∇divµu〉·divµu dµ −
1
2

∫
M

(divµu)3dµ = 0 ,

where the last step follows at once by integrating by parts.
Set C = 2κ2. Then, for any fixed x ∈ M the solution of the ODE in (34) has the

form
φ(t) = 2κ tan (arctan ( f (0)/2κ) − κt) ,

which is precisely (31).
Finally, to find the formula for the Jacobian we first compute the time derivative

of Jacµξ µ to get

d
dt
(Jacµξ µ) =

d
dt
ξ∗µ = ξ∗(Luµ) = (φ ◦ ξ) Jacµξ µ ,

which gives a differential equation, whose solution can be now easily verified to be
(33) by making use of the formulas (31) . �

Remark 16 The formula (33) for the Jacobian of the flow ξ(t) can be viewed in light
of the correspondence between the geodesics of g∞F in Dens(M) and those on the
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round sphere in a Hilbert space established in Thm. 1. Indeed, the map

t 7→
√

Jacµ(ξ(t, x)) = cos κt +
divµu0(x)

2κ
sin κt

describes the great circle on the unit sphere S∞
L2 ⊂ L2(M, dµ).

4.5.2 The Cauchy problem: breakdown of solutions

Using the explicit formulas of Thm. 6 it possible to make conclusions regarding
long time behaviour of solutions. For example, it turns out that all smooth (classical)
solutions of the Euler-Arnold equation (29) must break down in finite time.

Theorem 7 The lifespan of any (smooth) solution of the Cauchy problem (29)-(30)
constructed in Thm. 6 is

0 < Tmax =
π

2κ
+

1
κ

arctan
( 1
2κ

inf
x∈M

divµu0(x)
)
. (35)

Furthermore, ‖u(t)‖C1 ↗ +∞ as t → Tmax.

Proof The theorem follows at once from formula (31) and divµu = h. Alternatively,
observe that formula (33) implies that the flowofu(t, x) ceases to be a diffeomorphism
at the critical time t = Tmax. �

This result can be also interpreted geometrically as saying that the corresponding
geodesics of the Fisher-Rao metric g∞F leave the set of positive densities Dens(M)
and can be no longer lifted to a smooth curve of diffeomorphisms in D(M).

4.5.3 Complete integrability

The Euler-Arnold systems are a special class of hamiltonian systems. In the finite
dimensional case, given a smooth 2n-dimensional manifold M equipped with a
nondegenerate closed 2-form ω ∈ Ω2(M) a vector field v on M is called hamiltonian
if ιvω is exact, ιvω = dH for a certain function H, and such a function H is called a
hamiltonian function of v. Then a hamiltonian system is a triple (M,ω,H).

In this setting the Fréchet space C∞(M) of smooth functions on M acquires a
structure of an associative commutative algebra with a Poisson bracket given by
{ f ,g} = ω(v f , vg) where ιvf ω = df and ιvgω = dg. The equations of motion of a
hamiltonian system assume a simple and elegant form

df
dt
= { f ,H} (36)

for any function f ∈ C∞(M).
Any smooth function f such that { f ,H} = 0 is called a constant of motion (or

a first integral) of the hamiltonian system since (as an easy consequence of (36)) it
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necessarily assumes a constant value along any orbit of vH . A (finite-dimensional)
hamiltonian system is said to be (completely) integrable if it possesses n (almost
everywhere) functionally independent first integrals f1 = H, f2, . . . , fn which are
pairwise in involution, i.e., { fi, fj} = 0 for any i and j.

In infinite dimensions the situation is more subtle. Possessing infinitely many first
integrals may be insufficient to determine the motion of the system and the relations
between various competing definitions of integrability are not yet fully understood.
Nevertheless, there are infinite-dimensional systems for which most of these notions
agree. Perhaps, the most famous example is the Korteweg-de Vries equation of
mathematical shallow water theory. Other examples include the one-dimensional
Hunter-Saxton equation, the two-dimensional Kadomtsev-Petviashvili equation and
the Camassa-Holm type equations.

Suppose now thatG is a Lie group (finite or infinite dimensional) with Lie algebra
g. The (smooth part of its) dual g∗ carries a natural bracket (the Kirillov-Kostant
bracket) defined by

{ f ,g}KK (m) =
(
[df (m), dg(m)],m

)
,

where f ,g ∈ C∞(g∗) and the differentials df (m) and dg(m) at m ∈ G∗ are identified
with the corresponding elements of the Lie algebra via the natural pairing of g and g∗
given by (·, ·). In this setting the hamiltonian equation corresponding to the function
H and the Kirillov-Kostant structure on g∗ takes the form

dm
dt
= −ad∗dH(m)m.

If the hamiltonian system is driven by a kinetic energy E (a quadratic function of its
argument) then choosing H = E yields the Euler-Arnold equation (16) of Sect. 3.2.1
above.

It turns out that the equations induced by the g ÛH1 metric in Thm. 5 also belong to
this class.

Theorem 8 The Euler-Arnold equation of the Fisher-Rao metric g∞F on the space
of densities Dens(M) is an infinite-dimensional completely integrable dynamical
system.

Proof This is essentially a consequence of the fact that (29) describes the geodesic
flow on the sphere S∞

L2 (r) ⊂ L2(M, dµ) of radius r and it therefore admits infinitely
many first integrals in direct analogy with the finite dimensional case Sn−1(r) ⊂ Rn.
We refer to [30] for further details. �

Remark 17 It is natural to expect that in any dimension n the Euler-Arnold equation
(29) is integrable in that it admits a bi-hamiltonian structure. In the one-dimensional
case of the Hunter-Saxton equation (21) this fact is well known, see e.g., [29].
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5 Amari-Chentsov connections and their geodesics in the space
of densities

One of the questions posed in the monograph [4] asked for an infinite-dimensional
theory of Amari-Chentsov connections. So far several proposals have been developed
in various levels of generality. In this section we present an approach that fits well
within the framework of diffeomorphism groups and their quotients.

Let M be a compact Riemannian manifold without boundary. On the product
D(M) ×D(M) consider the following family of real-valued functions

D(α)(ξ, η) =
1

1 − α2

(
1 −

∫
M

(Jacµξ)
1−α

2 (Jacµη)
1+α

2 dµ
)
, (37)

D(−1)(ξ, η) = D(1)(η, ξ) =
1
4

∫
M

(
log Jacµξ − log Jacµη

)
Jacµξ dµ , (38)

where −1 < α < 1. These functions are clearly well defined on Dµ(M)\D(M) and
satisfy D(α)(ξ, η) ≥ 0 with equality if and only if ξ and η project onto the same
density on M . They can be naturally viewed as diffeomorphism group analogues
of the contrast functions (α-divergences) considered by Amari and Chentsov in the
classical setting of finite-dimensional statistical models.

Although for the sake of clarity we will focus on the one-dimensional case, all
the constructions can be readily generalized to diffeomorphism groups of higher-
dimensional manifolds.

If M is the unit circle T = R/Z then Dµ(T) is simply the set of rigid rotations
Rot(T) ' T. In this case it will be convenient to identify the quotient space of densities
Dens(T) = Rot(T)\D(T)with the subgroup of all those circle diffeomorphismswhich
fix a prescribed point, e.g. Dens(T) '

{
ξ ∈ D(T) : ξ(0) = 0

}
. Its tangent space at

the identity map can then be identified with the space of smooth periodic functions
that vanish at x = 0. Furthermore, for any such function u(x) the inverse operator of
A = −∂2

x can be written explicitly in the form

A−1u(x) = −
∫ x

0

∫ y

0
u(z) dzdy + x

∫ 1

0

∫ y

0
u(z) dzdy. (39)

We are now in a position to prove the following result.

Theorem 9 (Reduced α-geodesic equations)

1. Each contrast function D(α) induces on Dens(T) the homogeneous ÛH1 Sobolev
metric and an affine connection ∇(α) whose Christoffel symbols are given by

Γ
(α)
ξ (W,V) = −

1 + α
2

{
A−1∂x

(
(V ◦ ξ−1)x(W ◦ ξ−1)x

)}
◦ ξ (40)

where −1 ≤ α ≤ 1.
2. For any α the connections ∇(α) and ∇(−α) are dual with respect to the right

invariant Sobolev ÛH1 metric given at the identity by
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〈u, v〉 ÛH1 =
1
4

∫
T

uxvxdx.

∇(0) is the corresponding self-dual Levi-Civita connection.
3. The geodesic equations of ∇(α) on Dens(T) correspond to the generalized

Proudman-Johnson equations

∂t∂
2
xu + (2 − α)∂xu∂xxu + u∂3

xu = 0. (41)

In particular, the case α = 0 yields the completely integrable Hunter-Saxton
equation

utxx + 2uxuxx + uuxxx = 0 ,

while the case α = −1 yields the completely integrable µ-Burgers equation

utxx + 3uxuxx + uuxxx = 0.

The equation corresponding to α = 1 is also integrable in that its solutions can
be written down explicitly, see Thm. 10 below.

Proof As in finite dimensions the functions D(α) induce metrics and connections,
see Sect. 2.1.4. Assume first that α , ±1. Given any vectorsV,W tangent at ξ ∈ D(T)
let ξs,t be a two-parameter family of diffeomorphisms inD(T) such that ξ |s=t=0 = ξ
with ∂

∂s ξ |s=t=0 = V and ∂
∂t ξ |s=t=0 = W . Then from (37) we have

〈V,W〉α = −
∂

∂s

��
s=0

∂

∂t

��
t=0D(α)(ξs,0, ξ0,t ) (42)

=
1

1 − α2
∂

∂s

��
s=0

∂

∂t

��
t=0

∫
T
(∂xξs,0)

1−α
2 (∂xξ0,t )

1+α
2 dx

=
1
4

∫
T
∂xV∂xW (∂xξ)−

1+α
2 (∂xξ)

−1+α
2 dx

=
1
4

∫
T

VxWx

ξx
dx = 〈V,W〉 ÛH1 .

Suppose that W is a vector field on D(T) defined in some neighbourhood of ξ. Let
ξs,t ,r be a three-parameter family of diffeomorphisms such that ξ |s=t=r=0 = ξ with
∂
∂s ξ |s=t=r=0 = V , ∂

∂r ξ |s=t=r=0 = Z and ∂
∂t ξs |t=r=0 = Wξs ,0,0 for sufficiently small s.

Now, using (37) and (42) we compute
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〈∇
(α)
V W, Z〉α =

1
4

∫
T

(∇
(α)
V W)xZx

ξx
dx

= −
∂

∂s

��
s=0

∂

∂t

��
t=0

∂

∂r

��
r=0D(α)(ξs,t ,0, ξ0,0,r )

=
1

1 − α2
∂

∂s

��
s=0

∂

∂t

��
t=0

∂

∂r

��
r=0

∫
T
(∂xξs,t ,0)

1−α
2 (∂xξ0,0,r )

1+α
2 dx

=
1
4

∫
T

{(
(dW ·V) ◦ ξ−1

)
x
−

1 + α
2

(
V ◦ ξ−1)

x

(
W ◦ ξ−1)

x

} (
Z ◦ ξ−1)

xdx .

Now integrating by parts and using the fact that Z is arbitrary, we obtain(
∇
(α)
V W

)
ξ =

(
dW ·V

)
(ξ) − Γαξ (W,V)

where the Christoffel map is given by the formula (40).
The computations in the remaining two cases are analogous and for α = −1 and

α = 1 yield

Γ
(−1)
ξ (W,V) = 0 , (43)

Γ
(1)
ξ (W,V) = −A−1∂x

(
(V ◦ ξ−1)x(W ◦ ξ−1)x

)
◦ ξ , (44)

which establishes the first part of the theorem.
To establish the second part we need to verify that for any vector fields V,W and

Z on Rot(T)\D(T) we have

V ·〈W, Z〉 ÛH1 = 〈∇
(α)
V W, Z〉 ÛH1 + 〈W,∇

(α)
V Z〉 ÛH1 . (45)

This is done by a direct calculation as above. Alternatively, it can be deduced from
general properties of contrast functions of the type (37) and (38) as discussed e.g.
in Chap. 3 of [4]. The fact that ∇(0) is a Levi-Civita connection of the g ÛH1 metric
follows at once from (45).

The equation for geodesics of ∇(α) on Dens(T) has the form

d2γ

dt2 = Γ
(α)
γ

( dγ
dt
,

dγ
dt

)
. (46)

Let dγ/dt = u ◦ γ where u is a time-dependent vector field on T (i.e., a periodic
function vanishing at x = 0). Differentiating in the time variable and substituting
into (46) we obtain the corresponding nonlinear PDE

ut + uux = −
1 + α

2
A−1∂x(u2

x) ,

which we can rewrite as

−utxx − 3uxuxx − uuxxx = −(1 + α)uxuxx ,
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which is precisely (41). �

Remark 18 The Hunter-Saxton equation (21) (cf. Thm. 9 part 3.) can be alternatively
derived by observing that it is the Euler-Arnold equation of ∇(0) on tangent space to
Dens(T) at the identity map and as such it is obtained from the geodesic equation of
the right-invariant metric g ÛH1 by a standard procedure, see [29].

Remark 19 (α-curvature) Using the Christoffel symbols in (40) it is possible to
calculate the curvature of the α-connections. It turns out to be proportional to the
curvature of the ÛH1 metric, i.e.,

R(α)(V,W)Z = (1 − α2)
(
〈V ·〈W, Z〉 ÛH1 +W ·〈V, Z〉 ÛH1

)
(47)

for any vector fields V,W and Z on Dens(T). This formula can be computed as in
finite dimensions, see [16] where a different choice of parameters is made.

As already mentioned, it turns out that the geodesic equation corresponding to
α = 1 can be integrated as well. This is done indirectly by constructing affine
coordinates for ∇(1). Observe that from (47) we already know that the connections
∇(−1) and ∇(1) are flat. In the former case this is also evident from (43).

Theorem 10 The geodesic equations of ∇(1) corresponding to the Euler-Arnold
equation

utxx + uxuxx + uuxxx = 0 (48)

is integrable with solutions given explicitly by

u =
dξ
dt
◦ ξ−1 where ξ(t, x) =

∫ x

0 ea(y)t+b(y)dy∫ 1
0 ea(x)t+b(x)dx

(49)

and a and b are smooth mean-zero functions on T.

Proof Wewill construct a chart onDens(T) = Rot(T)\D(T) in which the Christoffel
symbols of ∇(1) vanish. Consider the map

ξ 7→ ϕ(ξ) = log ξx −
∫
T

log ξxdx (50)

from the quotient space to the space of smooth periodic mean-zero functions. To
determine how the Christoffel symbols transform under the change of variables
ξ 7→ ξ̃ = ϕ(ξ) we first compute

dξϕ(W) =
Wx

ξx
−

∫
T

Wx

ξx
dx

and
d2
ξϕ(W,V) = −

VxWx

ξ2
x

+

∫
T

VxWx

ξ2
x

dx
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for V,W ∈ Tξ (Dens(T). Using (39) and (44) with extra work we now find that

Γ̃
(1)
ϕ(ξ)

(
dξϕ(W), dξϕ(V)

)
= d2

ξϕ(W,V) + dξϕ
(
Γ
(1)
ξ (W,V)

)
= 0

where v = V ◦ ξ−1 and w = W ◦ ξ−1.
We can now construct explicit solutions of (48) as follows. Since Γ̃(1) = 0 all

geodesics of ∇(1) in the affine coordinates are straight lines

t 7→ ξ̃(t, x) = a(x)t + b(x) for x ∈ T

where a and b are smooth periodic functions of mean zero. To find a general solution
u(t, x) it now suffices to invert the map ϕ in (50) to obtain the flow t 7→ ξ(t) = ϕ−1ξ̃(t)
and then right-translate the velocity vector of the curve ξ(t) to the tangent space at
the identity in Dens(T). This yields the explicit formulas in (49). �

The proof of Thm. 10 shows that the equation (48) is integrable. In fact, the
explicit change of coordinates linearizes the flow in the same spirit as the formalism
of the inverse scattering transform. For further details we refer to the paper [36].

Appendix 1: Banach completions of manifolds of maps

Even though for our purposes it was convenient to work with C∞ maps, most of the
constructions presented in this chapter could be (and, in the general literature on
the subject, typically are) carried out in the framework of Banach spaces, such as
Sobolev spaces. We describe this setup briefly and refer the reader to e.g., [20] or
[44] for further details.

Sobolev spaces of arbitrary order

As before let M be a closed Riemannian manifold and let E be a hermitian vector
bundle with fibre over M and connection ∇. To define Sobolev sections of E of
arbitrary order s ∈ R it will be convenient to use the Fourier transform. By com-
pactness we pick a trivializing cover by charts ϕi : Ui ⊂ M → {x ∈ Rn : |x | ≤ 1}
where i = 1, . . . ,N so that E |Ui ' Ui × C

m with a smooth extension to a neighbour-
hood of each Ui . We can further arrange things so that M =

⋃N
i=1 Bi(1/

√
2) where

Bi(1/
√

2) =
{

x ∈ Ui : |ϕ(x)| < 1/
√

2
}
and setting ψi = ϕi/(1 − |ϕi |2)1/2 produce

a coordinate cover with the property that Ui ' R
n and the restriction to Ui of any

smooth section of E can be viewed as a function u : Rn → Cm that is bounded
together with its weighted derivatives x 7→ |xαDαu(x)| for any multi-index α. Let
{%i}i=1,...,N be a smooth partition of unity subordinate to the Ui’s. Then a section
of E can be written as u =

∑
i %iu whose terms are smooth functions of compact

support in the unit ball in Rn. This effectively reduces the study of sections of E
to that of Cm valued Schwartz class functions (cf. Ex. 3 of Sec. 2.1) and makes it
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possible to utilize the Fourier transform on Rn

û(ξ) = (2π)−n/2
∫
Rn

e−ix ·ξu(x) dx

and its inversion on S(Rn). For any s ∈ R we let

‖u‖2H s =

∫
Rn

(
1 + |ξ |2

)s
|û(ξ)|2dξ (51)

and define the Sobolev space of Hs sections of E to be the completion of S(Rn) in
the norm (51). Clearly, this construction generalizes the spaces of Sobolev sections
introduced in Example 2 for any integer s = k with norms given by (2).

The importance of Sobolev spaces lies in the fact that they account for the "size"
of functions in terms of both the "mass" and "height" of their derivatives in a way
that relates the two. This is borne out by the following result.

Theorem 11 (Sobolev Lemma) If s > n/2+ k then any u ∈ Hs(E) can be modified
(on a set of µ-measure zero) to a function of class Ck . Furthermore, we have

‖u‖Ck ≤ Cn,s ‖u‖H s

for some constant Cn,s depending only on s and n.

Proof Observe that the function ξ 7→ (1 + |ξ |2)−s is integrable on Rn whenever
s > n/2. For any u ∈ S(Rn) using the Fourier inversion formula and applying the
Cauchy-Schwartz inequality we find

|u(x)|2 ≤ (2π)−n
∫
Rn

(
1 + |ξ |2

)−sdξ
∫
Rn

(
1 + |ξ |2

)s
|û(ξ)|2dξ ≤ Cn,s ‖u‖2H s

for any x ∈ Rn which settles the case k = 0. Repeating this argument for each
derivative Dαu with |α | < s − n/2 yields the result. �

Sobolev manifolds of maps

The set Hs(M,M) is now defined as consisting of maps f of M into itself such
that for any x ∈ M there are local charts (U, ϕ) at x and (V,ψ) at f (x) for which
the composition ψ ◦ f ◦ ϕ−1 belongs to Hs(φ(U),Rn). If s > n/2 then using the
Sobolev lemma one shows that this definition is independent of the choice of charts
on M . The tangent space at f ∈ Hs(M,M) is the set of all Hs cross-sections of the
pull-back bundle Tf Hs(M,M) = Hs( f −1T M) and is used as the model space.

A differentiable atlas for Hs(M,M) can be constructed using the Riemannian
exponential map on M . For example, to find a chart at the identity f = e we may
consider the map Exp : T M → M × M given by

v 7→ Exp(v) =
(
π(v),expπ(v) vπ(v)

)
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where π : T M → M is the tangent bundle projection.Exp is clearly a diffeomorphism
from a neighbourhood U of the zero section onto a neighbourhood of the diagonal
in M × M . Using this map one defines a bijection from the set

Ue = {v ∈ Hs(T M) : v(M) ⊂ U}

onto a neighbourhood of the identity map in Hs(M,M) by

Ψ : TeHs(M,M) ⊃ Ue → Hs(M,M) v 7→ Ψ(v) = Exp ◦ v.

One checks now that the pair (Ue,Ψ) defines a chart in Hs(M,M) around e. Com-
pactness, properties of Riemannian exponential maps and standard facts about com-
positions of Sobolev functions and diffeomorphisms ensure that the charts are well-
defined and independent of the metric on M and their transition functions are smooth
on the overlaps.

For any s > n/2 + 1 the group of Hs diffeomorphisms of M is now defined as

D
s(M) = D1(M) ∩ Hs(M,M),

whereD1(M) is the set of C1 diffeomorphisms of M . SinceD1(M) forms an open set
in C1(M,M), it follows that Ds(M) is also open as a subset of the Hilbert manifold
Hs(M,M) (Sobolev lemma) and hence a smooth manifold. Furthermore, it is a topo-
logical group under composition of diffeomorphisms. In fact, right multiplications
Rη(ξ) = ξ ◦ η are smooth in the Hs topology, but left multiplications Lη(ξ) = η ◦ ξ
and inversions i(ξ) = ξ−1 are continuous, but not Lipschitz continuous.

Example 21 Let f (x) = x + ah(x) and g(x) = x + bh(x), where −1 ≤ x ≤ 1,
0 < b = 2a � 1 and h(x) is smooth function of compact support in (−1,1) such that
h(0) = 0 and ‖h‖H2 ≤ 1. Clearly, both f and g are increasing functions.

Furthermore, on the one hand we have

‖ f − g‖H2 = ‖ah‖H2 ≤ a.

On the other hand

‖ f −1 − g−1‖H2 ≥
��( f −1)′(0) − (g−1)′(0)

��
=

��� 1
1 + ah′(0)

−
1

1 + bh′(0)

��� = a−1 |1 − a|
|1 − 2a|

.

Letting now a ↘ 0 we find that the functions converge in H2, while the norm of
their inverses blows up.

The subgroup of volume-preserving Hs diffeomorphisms

D
s
µ(M) =

{
η ∈ D(M) : η∗µ = µ

}
is a closedC∞ submanifold ofDs(M). This follows directly from the implicit function
theorem for Banach manifolds and the Hodge decomposition.
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Appendix 2: Optimal Transport and Wasserstein distance

Consider the space of densities Dens(M) as the space D(M)/Dµ(M) of left cosets
described in Rem. 13 above. The projection ofD(M) onto this quotient given by the
pushforward map Π(ξ) = (ξ−1)∗µ = Jacµξ−1µ defines (as in the case of right cosets)
a smooth principal bundle with fibre Dµ(M).

The group D(M) carries a natural L2 metric

〈u ◦ ξ, v ◦ ξ〉L2 =

∫
M

〈u, v〉 Jacµξ dµ u, v ∈ TeD(M), ξ ∈ D(M) , (52)

whose geometry is relatively easy to visualize: a curve t 7→ ξ(t) is a geodesic inD(M)
if and only if t 7→ ξ(t)(x) is a geodesic in M for each x. Observe that in general
this metric is neither left- nor right-invariant. It is right-invariant when restricted
to Dµ(M) and it becomes left-invariant only when restricted to the subgroup of
isometries.

In order to see that Π also defines a Riemannian submersion note that the hori-
zontal vectors with respect to (52) have the form ∇ f ◦ ξ for some f : M → R and
that the metric descends to a (weak) Riemannian metric on the base

〈α, β〉ρ =

∫
M

〈∇ f ,∇g〉 ρ dµ , (53)

where f and g solve the equations div (ρ∇ f ) = −α and div (ρ∇g) = −β and the
mean-zero functions α and β are tangent vectors to Dens(M) at ρ.

The Riemannian distance of (53) between two measures ν and λ on the space
of densities Dens(M) (viewed as the space of left cosets) has a very appealing
interpretation as the L2 cost of transporting one density to the other

dist2W (ν, λ) = inf
ξ

∫
M

dist2M (x, ξ(x)) dx (54)

where the infimum is over all diffeomorphisms ξ such that ξ∗λ = ν and distM is
the Riemannian distance on M . In this setting distW is often referred to as the L2-
Wasserstein or (perhaps more appropriately) the Kantorovich-Rubinstein distance
between densities ν and λ. It is of fundamental importance in Optimal Transport
problems. We refer to the papers [10], [45] or the comprehensive monograph [53]
for more details.
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