(the differentials dF and dG, taken at point M, lie in the closure of @ and their commutator
is defined).

The Euler equation preserves the orbits of the coadjoint representation of @ and is a
Hamiltonian equation with Hamiltonian H(M) = cRM, A^*HM, which is called the energy.

2. Recall that the Virasoro algebra V is the unique nontrivial central extension by
means of R of the Lie algebra Vect S^1 (of vector fields of the circle). Its elements can be
identified with the pairs (2π-periodic function, number). Then a commutator in V takes the
form

\[[f(x), a] \cdot [g(x), b] = \int (f(x) \xi'(x) - g(x) \xi''(x)) \, dx \]

(here and below the integration is over interval [0, 2π]).

Space V^* can be identified with pairs (2π-periodic function, number). Bracket (1) on
functions on V^* is given by the formula

\[\{F, G\} (u(x), c) = \int \left(\frac{\delta F}{\delta u} \frac{\delta G}{\delta u} - \frac{\delta G}{\delta u} \frac{\delta F}{\delta u} \right) u + c \left(\frac{\delta F}{\delta u} \right)' \frac{\delta G}{\delta u} \, dx \]

(1')

(as functions on V^* it is sufficient to consider integrals of differential polynomials (see [2])).
\[\delta F/\delta u(x) \] is defined by the equation

\[\frac{d}{dx} \frac{\delta F}{\delta u}(u + ev, c) \bigg|_{u=0} = \int \frac{\delta F}{\delta u}(x) v(x) \, dx. \]

The Hamiltonian equation with Hamiltonian F takes the form

\[u = 2 \frac{\delta F}{\delta u} u' + \frac{\delta F}{\delta u} u'' - c \frac{\delta F}{\delta u} \omega, \quad \omega = 0. \]

(2')

Consider inertia operator A such that A(f, a) = (f, a) \equiv V^*. It defines a scalar product
on V: \((f, a), (g, b)\) = \(\int fgdx + ab \).

Proposition 1. The Euler equation corresponding to inertia operator A coincides with
the KdV equation.

Proof. The energy on V^* equals H(u, c) = \(\frac{1}{2} \int u^2(x) \, dx + \frac{c^2}{2} \). The Hamiltonian equation

\[\dot{u} = 3u' - cu'' \]

(3)

corresponds to it.

3. The Neveu–Schwarz (NS) and Ramond (R) superalgebras are the simplest superanallogues
of the Virasoro algebra. They enter into a number of so-called Lie superalgebras of string
theories [4]. The even parts of NS and R coincide with the Virasoro algebra, and the odd
parts can be identified with functions of one variable such as \(\psi(x + 2\pi) = -\psi(x) \) for NS and
\(\psi(x + 2\pi) = \psi(x) \) for R. A commutator in NS and R takes the form

\[[f(x), \psi, (x), \psi', (x), (f'(x) + \psi'(x)/2)]. \]

The dual spaces NS^* and R^* can be identified with a set of triples \((u(x), \xi(x), c) \),
where u(x) is a function on S^1 with values in the even part, and \(\xi(x) \) is a function such
that \(\xi(x + 2\pi) = -\xi(x) \) (respectively, \(\xi(x) \)) with values in the odd part of some super-
commutative ring.

Bracket (1) on NS^* and R^* (see [5; 6]) is defined by operator

\[P(u, \xi, c) = \left(\begin{array}{cc} 2\xi' u' - x & u \xi' - 2 \xi' x \xi' \\ -u' \xi' & 2 \xi' \end{array} \right), \]

where \((u, \xi, c) \equiv NS^*(R^*)\), \(\delta = d/dx \), and takes the form

\[\{F, G\} (u(x), c) = \left(\frac{\partial F}{\partial u}, \frac{\partial F}{\partial \xi} \right) \cdot \left(\frac{\partial G}{\partial u}, \frac{\partial G}{\partial \xi} \right) \].

(1'')

The Hamiltonian equation with Hamiltonian F is defined by formula

\[\dot{u} = 3u'-cu'' \]

(3)
\[
\left(\frac{\dot{u}}{\xi} \right) = -p \left(\frac{\delta F/\delta u}{\delta F/\delta \xi} \right).
\]

Consider inertia operator \(A_g\): \(NS \rightarrow NS^\ast (R \rightarrow R^8)\):

\[A_g(f(x), \varphi(x, \omega)) = (f(x), 1/2 \delta^{-1} \varphi(x, \omega)).\]

In the case of the NS superalgebra, it is uniquely defined and is nondegenerate, since integration operator \(\delta^{-1}\) acts in the space of functions with null average. For the R superalgebra, \(\delta^{-1}\) is defined by the formula \(\delta^{-1}w(x) = \frac{x}{2} \int (u - \int u) dy - \int \int (u - \int u) dy\). The corresponding metric proves to be degenerate.

Proposition 2. The Euler equation corresponding to inertia operator \(A_g\) coincides with the Korteweg–de Vries superequation from [6].

Proof. The energy equals \(H(u, \xi, c) = \int f(u^2(x) = 4\xi'(x)(x))^2 dx + c^2/2\). By formula (2''), the Hamiltonian equation with Hamiltonian \(H\) has the form

\[
\dot{u} = 3u' - cu'' - 6\xi''\xi, \\
\dot{\xi} = 3u'\xi'' + 3u'\xi''/2 - 2c\xi''.'
\]

The authors are deeply grateful to V. I. Arnol'd and G. M. Khenkin for their attention to the work and for useful discussions, and to A. O. Radul for improving the text of the article.

LITERATURE CITED