subbundle E_1 which satisfies the following conditions:

1) the restriction of the scalar product to E_1 is nondegenerate and indefinite;

2) the Peterson form of the subbundle TM^n effects an isomorphism of the tangent bundle $\text{Hom}(E_1, E/E_1)$, all of whose sections have common kernel.

Here the Weyl tensor of the metric $g(X, Y) = \langle V_X s, V_Y s \rangle$ (where s is an arbitrary section of E_1) coincides with the curvature of the connection, projected to the orthogonal complement to E_1 (after identifying the latter with an $\text{End}(TM^n)$-valued 2-form).

LITERATURE CITED

KORTEWEG-DE VRIES SUPEREQUATION AS AN EULER EQUATION

V. Yu. Ovsienko and B. A. Khesin

It is known that the Korteweg-de Vries (KdV) equation is associated with the Virasoro algebra (see [2; 3]). In [6] (see also [5; 7]) the Korteweg-de Vries superequation (sKdV) was proposed, corresponding to the simplest superanalogues of the Virasoro algebra, i.e., the Neveu-Schwarz and the Ramond superalgebras. The present note concerns one geometric aspect of this connection. Its goal is to show that (s)KdV is the Euler equation on the corresponding groups, i.e., the equation of the geodesics of some one-sidedly invariant metrics.

1. Recall the well-known definitions from mechanics (see [1]). Let \mathfrak{g} be a Lie (super)algebra. The (right-)invariant metric on the corresponding group is uniquely defined by symmetric operator $A: \mathfrak{g} \rightarrow \mathfrak{g}^*$, which is called the inertia operator of an extended rigid body. It is given by the conveyance over the group of (right) shifts of the scalar product on \mathfrak{g}:

$$(\xi, \eta) = \langle A\xi, \eta \rangle, \text{ where } \xi, \eta \in \mathfrak{g}.$$

Let $g(t)$ be a geodesic of the right-invariant metric on the group. An element $\omega = Rg^{-1}g$ of the Lie algebra is called the angular velocity of the body. The element $M = A\omega$ of \mathfrak{g}^* is called the kinetic moment with respect to the body.

The moment vector with respect to the body satisfies equation $dM/dt = \omega \mathfrak{ad}M$ which is called the Euler equation.

On the dual space to the Lie (super)algebra there exists a natural Poisson-Lie-Berezin-Kirillov bracket. Let F and G be functions on \mathfrak{g}^*. Then

$$\{F, G\}(M) = \langle M, [dF, dG] \rangle \quad (1)$$