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V
ladimir Arnold, an eminent mathemati-
cian of our time, passed away on June 3rd,
2010, nine days before his 73rd birthday.
This article, along with the one in the
previous issue of the Notices, touches on

his outstanding personality and his great contribution
to mathematics.

1. Dima Arnold in my life, by Dmitry Fuchs
Unfortunately, I have never been Arnold’s student,
although as a mathematician, I owe him a lot. He
was just two years older than I, and according to
the University records, the time distance between us
was still less: when I was admitted to the Moscow
State University as a freshman, he was a sophomore.
We knew each other, but did not communicate much.
Once, I invited him to participate in a ski hiking trip
(we used to travel during the winter breaks in the
almost unpopulated Northern Russia), but he said that
Kolmogorov wanted him to stay in Moscow during the
break: they were going to work together. I decided that
he was arrogant and never repeated the invitation.

Then he became very famous. Kolmogorov an-
nounced that his 19 years old student Dima Arnold
had completed the solution of Hilbert’s 13-th problem:
every continuous function of three or more variables is
a superposition of continuous functions of two variables.
Dima presented a two-hour talk at a weekly meeting
of the Moscow Mathematical Society; it was very
uncommon for the Society to have such a young speaker.
Everybody admired him, and he certainly deserved
that.

Still there was something that kept me at a distance
from him. I belonged to a tiny group of students, led
by Sergei Novikov, which studied algebraic topology.
Just a decade before, Pontryagin’s seminar in Moscow

V. Arnold, drawing, 1968

was a true center of the world topology; but then
Cartan’s seminar in Paris claimed the leadership,
algebraic topology became more algebraic, and the
rulers of Moscow mathematics pronounced topology
dead. Our friends tried to convince us to drop all these
exact sequences and commutative diagrams and do
something reasonable, like functional analysis, or PDE,
or probability. However, we were stubborn. We even
tried to create something like a topological school, and,
being already a graduate student, I delivered a course
of lectures in algebraic topology. The lectures were
attended by several undergraduates, and we were happy
to play this game.
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At Otepya, Estonia

And then something incredible happened. One day
I found the lecture room filled beyond capacity, I
even had to look for a bigger room. My audience had
become diverse: undergraduates, graduate students,
professors. And this change had a very clear reason: the
Atiyah-Singer index formula.

The problem of finding a topological formula for the
index of an elliptic operator belonged to Gelfand. Our
PDE people studied indexes a lot, and they had good
results. It was not a disaster for them that the final
formula was found by somebody else: their works were
respectfully cited by Atiyah, Singer and their followers.
The trouble was that the formula stated: the index is
equal to – and then something which they could not
understand. People rushed to study topology, and my
modest course turned out to be the only place to do
that.

And to my great surprise, I noticed Dima Arnold in
the crowd.

I must say that Dima never belonged to any crowd.
Certainly, the reason for his presence did not lie in
any particular formula. Simply, he had never dismissed
topology as nonsense, but neither had he been aware
of my lectures. When he learned of their existence, he
appeared – that was all. He never missed a lecture.

One day, we met in a long line at the student
canteen. Listen, said he, can you explain to me what a
spectral sequence is? I began uttering the usual words:
a complex, a filtration, differentials, adjoint groups, etc.
He frowned, and then said: thus, there is something
invariant (“invariant” in his language meant “deserving
a consideration”) in all this stuff, and this is the spectral
sequence, right? I thought for a moment and said, yes.
At this moment we got our meals, and our conversation
changed its direction.

Evidently, spectral sequences were not for Arnold.
Nonetheless, there is such a thing as Arnold’s spectral
sequence [9], a humble object in the world of his
discoveries, resembling the asteroid Vladarnolda in
the Solar system (the stability of which he proved
approximately at the time of our conversation in the
canteen), named after him. When I say that he could not
appreciate spectral sequences, I mean that he in general
had a strong dislike for unnecessary technicalities, and
technicalities were often unnecessary to him because

of his extremely deep understanding. By the way, this
attitude to impressive but unnecessary tricks extended
beyond mathematics. Years later, we spent a week or
so with friends at a ski resort in Armenia. We showed
to each other different turns and slidings, but Dima
obviously was not interested. He said that the slope
was not too steep, and he simply went straight from
the top to the bottom where he somehow managed to
stop. I was surprised: there was a stone hedge in the
middle of the slope which you needed to go around.
Dima said modestly: you know, at this place my speed
is so high, that I simply pull my legs up and jump over
the hedge. I could not believe; so I waited at a safe
distance from the hedge and watched him doing that.
It was more impressive than all our maneuvers taken
together. Whatever he did, mathematics, skiing, biking,
– he preferred not to learn how to do it, but just to
do it in the most natural way, and he did everything
superlatively well.

I do not remember how it came about that I began
attending his Tuesday seminar. Probably, he asked me
to explain some topological work there, then I had
to participate in some discussion, and then I could
not imagine my life without spending two hours every
Tuesday evening in a small room on the fourteenth floor
of the main building of the MSU. Works of Arnold,
his numerous students and other selected people were
presented at the seminar, and Dima insisted that every
word of every talk be clear to everybody in the audience.
My role there was well established: I had to resolve
any topology-related difficulty. Some of my friends said
that at Arnold’s seminar I was a “cold topologist”.
Certainly, a non-Russian-speaker cannot understand
this, so let me explain. In many Russian cities there
were “cold shoemakers” in the streets who could provide
an urgent repair to your footwear. They sat in their
booths, usually with no heating (this is why they were
“cold”), and shouted “Heels!... Soles!...”. So, I appeared
as if sitting in a cold booth and yelling “Cohomology
rings!... Homotopy groups!... Characteristic classes!...”.

In my capacity as cold topologist, I even had to
publish two short articles. One was called “On the
Maslov–Arnold characteristic classes,” and the other
one had an amusing history. One day, Dima approached
me before a talk at the Moscow Mathematical Society
and asked whether I could compute the cohomology of
the pure braid group (“colored braid group” in Russian);
he needed it urgently. I requested a description of the
classifying space, and the calculation was ready at
the end of the talk. It turned out that the (integral)
cohomology ring was isomorphic to a subring of the
ring of differential forms on the classifying manifold.
He suggested that I write a note, but I refused: for a
topologist it was just an exercise, it could be interesting
only in conjunction with an application to something
else (I knew that Dima was thinking of Hilbert’s 13-th
problem in its algebraic form: the possibility of solving
a general equation of degree 7 not in radicals, but
in algebraic functions of two variables). I suggested
that he writes an article and mentions my modest
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contribution in an appropriate place. He did [2]. But
a couple of months later, he needed the cohomology
of the classical Artin’s braid group. This was more
difficult and took me several days to complete the
calculation. I did it only modulo 2, but I calculated a
full ring structure, and also the action of the Steenrod
squares. (The integral cohomology was calculated later
independently by F. Weinstein and V. Goryunov, and
still later Graeme Segal proved that the classifying
space of the infinite braid group was homologically
equivalent to Ω2S3.) I phoned to Dima and explained
the results. First, he requested that I give a talk at
the seminar (Next Tuesday! That is, tomorrow!), and
then he decidedly refused to do the same thing as
we agreed upon for pure braids: to write an article
and to mention my participation where appropriate.
After a brief argument, we arrived at a compromise: I
publish an article about the cohomology of the braid
group without any mentioning of Hilbert’s problem,
and he publishes an article where this cohomology is
applied to superpositions of algebraic functions. When
we met next day, his article was fully written and mine
had not even been started. But his article contained
a reference to mine, and hence the title of the latter.
I could delay no longer, and the two articles were
published in the same volume of Functional Analysis
[5, 14] . Since the articles in Functional Analysis were
aranged alphabetically, his article was the first, and
mine was the last. But this was not the end of the story.
A cover-to-cover translation of the Functional Analysis
was published by an American publisher. The braid
group in Russian is called gruppa kos, the word kos is
simply the genitive of kosa, a braid, but the American
translators thought that KOS is a Russian equivalent
of COS, and the English translation of my article was
attributted to a mysterious cosine group; I do not know
how many English-speaking readers of the journal tried
to guess what the cosine group was.

As a permanent participant of Arnold’s seminar,
I had an opportunity to give talks on my works not
explicitly related to the main directions of the seminar.
I gave a brief account of my works with Gelfand on
the cohomology of infinite dimensional Lie algebras,
of characteristic classes of foliations. These things did
not interest Dima much, although he himself had a
work on similar things [3]. He always considered algebra
and topology as something auxiliary. Once, I heard
him saying respectfully, “Siegel’s case, this is a true
analysis,” and this sounded as “true mathematics.”
Whatever he did, his unbelievably deep understanding
of analysis was always his main instrument.

One more story of a similar kind. In 1982, John
Milnor, who briefly visited Moscow, delivered a talk at
Arnold’s seminar on a very recent (and not yet published
then) work of D. Bennequin on a new invariant in the
theory of Legendrian knots in contact 3-manifolds. The
main result of Bennequin stated that the “Bennequin
number” (now justly called the “Thurston-Bennequin
number”) of a topologically unknotted Legendrian knot
in the standard contact space must be strictly negative.

Summer School “Contemporary Mathematics” at
Dubna, near Moscow, 2006

For an illustration, Milnor showed an example of a
Legendrian trefoil with the Bennequin number +1.
Arnold said that at last he had seen a convincing
proof that the trefoil is a topologically non-trivial knot.
Certainly, this was a joke: Bennequin’s proof at that
time did not look convincing, and the non-triviality
of the trefoil has a popular proof understandable to
middle school students (via the tricolorability invariant).
But for Dima only an analytic proof could be fully
convincing.

When I joined the Arnold seminar, it had just
acquired the name of “the seminar on singularities of
smooth maps.” In mid-sixties, Arnold was fascinated
by works of John Mather on singularities. People could
not understand this. Allegedly, Pontryagin said: we can
always remove complicated singularities of a smooth
map by a small perturbation, it is sufficient to study
the generic case. But singularities appear in families
of smooth maps, you cannot remove them, insisted
Dima. Some people mocked his affection for singularity
theory. There is a short story of Stanislav Lem (a
Polish science fiction writer) where robots which could
experience human emotions were manufactured. One
of these robots felt an immense joy when he solved
quadratic equations – just like you, Dima! Dima smiled
at such jokes but continued studying singularities.

The results of Arnold and his students in this area
were very deep and diverse. He classified all singularities
that appear in generic families depending on no more
than 14 parameters, studied their moduli varietes and
discriminants. He discovered the relations of the theory
to symplectic, contact, and differential geometry. It had
deep applications in topology (Vassiliev’s invariants of
knots), differential equations, classical mechanics.

More or less at the same time, a widely popularized
version of the singularity theory emerged under the
colorful name of the theory of catastrophes. It was
promoted by two remarkable topologists: R. Thom and
E.C. Zeeman. “The most catastrophic feature of the
theory of catastrophes is a full absence of references
to the works of H. Whitney,” Dima wrote in one of
his books. Indeed, mathematically, the theory of catas-
trophes was based on a classification of singularities
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of generic smooth maps of a plane onto a plane. The
classification was fully done in 1955 by Whitney [15],
but the founding fathers of the catastrophe theory
preferred to pretend that the works of Whitney never
existed. Still, Dima made his contribution into the
popularization of catastrophes: he wrote a short popular
book under the title “Theory of Catastrophes.” It was
written in 1983 and then translated into a dozen of
languages.

In 1990, I moved to a different country, and we met
only four or five times after that. The last time that I
saw him in Spring 2007, when he visited California. We
travelled together through Napa and Sonoma valleys,
he was especially interested in visiting Jack London’s
grave. He spoke endlessly of his new (was it new?)
passion for continued fractions, numerical functions,
and numerical experimenting. I boasted that I taught a
course of History of Mathematics, and he immediately
began testing my knowledge of the subject: who proved
the Euler theorem of polyhedra? who proved the Stokes
theorem? To his apparent displeasure I passed the
exam. (He was especially surprised that I knew that
Descartes proved the Euler theorem more than 100
years before Euler. Why do you know that? I said that
Efremovich told me this some 30 years before.) More
than that: I knew something that he did not know:
the Stokes theorem as it is stated in modern books,∫
C
dϕ =

∫
∂C

ϕ, was first proved and published by the
young French mathematician E. Goursat. We discussed
a bit our further plans, and Dima said that whatever
he plans, he always adds, as Leo Tolstoy, EB� = esli

budu �iv, if I am alive. I said that I also never forget to
add this, but apparently neither of us took it seriously.
Anyhow, we never met again.

My tale of Dima Arnold is becoming lengthy, al-
though I feel that what I have said is a small fraction
of what I could say about this tremendous personality.
Still, the story would be incomplete if I did not
mention something known to everybody who has ever
communicated with him, let it be only occasionally:
his universal knowledge of everything. Whatever the
subject was: Chinese history, African geography, French
literature, the sky full of stars (especially this: he could
speak endlessly of every star in every constellation),
he demonstrated without effort a familiarity with
the subject which exceeded and dwarfed everybody
else’s, and this, combined with his natural talent as a
story-teller, made every meeting with him a memorable
event. Some friends recollect a sight-seeing tour in
Paris he gave a couple of months before his death.
Obviously, no tourist agency ever had a guide of this
quality. Instead of adding my own recollections, I finish
my account with a translation of a letter I received
from him a year after our last meeting and two years
before his death.

Paris, March 26, 2008

Dear Mitya,

I have recently returned to Paris from Italy where
I wandered, for three months, in karstic mountains

In a cavern, 2008

working at ICPT (the International Center for Theoret-
ical Physics) at Miramare, the estate of the Austrian
prince Maximilian who was persuaded by Napoleon
III to become the Emperor of Mexico (for which he
was shot around 1867 as shown in the famous and
blood-drenched picture of Edouard Manet).

I lived in the village of Sistiana, some 10 kilometers
from Miramare in the direction of Venice. It was
founded by the pope Sixtus, the same one who gave
names to both the chapel and Madonna. Passing the
POKOPALIŠCE1 (the cemetery) some 3 versts2 to the
North, I reached a deer path in a mountain pine grove.
These deer do not pay much attention to a small tin
sign, DERŽAVNAYA MEŽA3 (the state border). After
that it is Slovenia to which I ran, following the deer. But
at the next sign, PERICOLO, the deer refused to go
any farther. The local people (whose language is closer
to Russian than Ukrainian or Bulgarian) explained
to me that the sign is a warning that the nearby
caves have not been demined. And they were mined
during the FIRST world war when my deer path was
called SENTIERA DIGUERRA and was a front line
(described by Hemingway in “A Farewell to Arms”).

I did not go down to these particular caves, but every
day I visited tens of them, of which some (but not all)
were shown on a map (where they were called YAMA4,
GROTTA, CAVA, CAVERNA, ABISSA, dependingly
of the difficulty of the descent). All these caves look
pretty much the same (a colorful scheme is provided):
there is a hole on the mountain, a meter in size, and
down go walls, of not even vertical but rather a negative
slope. The depth of the mine is usually around 10 or
20 meters (but I descended to YAMA FIGOVICHEVA
with the officially declared depth of 24 meters and to
the half of the height, or rather the depth, of GROTTA
TERNOVIZZA whose depth is marked as 32 meters and
to which one cannot descend without a rope). At the

1This word has a notable similarity to Russian KOPAT^,

to dig.
2
VERSTA is an old Russian measure of length, ≈ 1.1 km.

3Both words belong to old Russian.
4Russian �MA means a gap.
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bottom of the YAMA a diverging labyrinth of passages
starts, of the lengths on the order of 100 meters. They
go to lakes, stalactites, etc. Sometimes there is even
a descent to the Timavo river (which flows about 50
kilometers at the depth 100 or 200 meters, depending
on the height of hills above). Before this 50 kilometers
it is a forest river resembling Moscow River at Nikolina
Gora5 with a charming Roman name of REKA6.

This was a part of Jason’s expedition (with arg-
onauts). On his way back from Colchis (with the
golden fleece) he sailed his ship Argo upstream Ister
(Danube) and its tributaries to the Croatian peninsula
named Capudistria (which is visible from my window
at Sistiana), then they dragged the ship to REKA and,
following Timavo, they reached to northernmost point
of the Adriatic, where the Roman city of Aquileia was
later built.

Near Aquileia, I discovered a goddess Methe, new to
me, but this is a separate story. (She saves any drinker
of drunkenness, however much he drank. Allegedly, she
was the mother of Athena, and Jupiter ate her, since he
was afraid that she would give birth to a son, and that
this son would dethrone him, precisely as he himself
had dethroned his father). Aquileia is a Roman port of
the first century, preserved as well as Pompeii, without
any Vesuvius: simply Attila who destroyed the city
left the port intact, including the canals, ships (which
survive to our time), quays, knechts and basilicas (which
became Christian in the IV century) with mosaics of
50 m× 100 m in size, and absolutely everything as in
Pompeii. No room to describe everything, I am just
sending my best (Easter) wishes.

On June 3, I go to Moscow, there will be a conference
dedicated to the centenary of LSP7.

Dima

2. My encounters with Vladimir Igorevich
Arnold, by Yakov Eliashberg

My formation as a mathematician was greatly influ-
enced by Vladimir Igorevich Arnold, though I never
was his student and even lived in a different city.
When I entered Leningrad University in 1964 as an
undergraduate math student, Arnold was already a
famous mathematician. By that time he solved 13th
Hilbert problem and wrote a series of papers which
made him “A” in the KAM theory. Arnold was also
working as an editor of the publishing house “Mir”,
where he organized and edited translations of several
books and collections of papers not readily accessible
in the USSR. One of these books, a collection of papers
on singularities of differentiable mappings, was an eye
opener for me.

The first time I met Arnold was in January 1969
at a Winter Mathematical School at Tsakhkadzor in

5A village some 30 kilometers from Moscow where many

remarkable Russian people (including Dima) used to spend

their vacations.
6
REKA is the Russian for a river.

7Lev Semenovich Pontryagin

Ya. Eliashberg and V. Arnold, 1997

Armenia. I was eager to tell him about some my recently
proved results concerning topology of singularities.
Later that year he invited me to give a talk at his
famous Moscow seminar. I remember being extremely
nervous going there. I could not sleep at all in the
night train from Leningrad to Moscow - and I do not
remember anything about the talk itself.

In 1972 Vladimir Igorevich was one of my PhD
dissertation referees, or, as it was called, an “official
opponent”. I remember that on the day of my defense,
I met him at 5 am at the Moscow Train Station in
Leningrad. He immediately told me that one of the
lemmas in my thesis was wrong. It was a local lemma
about the normal form of singularities and I thought
(and, frankly, still do) that the claim is obvious. I
spent the next two hours trying to convince Vladimir
Igorevich and he finally conceded that, probably, the
claim is correct – but still insisted that I do not really
have the proof. A year later he wrote a paper devoted
to the proof of that lemma and sent me a preprint with
a note that now my dissertation is on the firm ground.

After my PhD defense I was sent to work at a newly
organized university in Syktyvkar, the capital of Komi
Republic in the north of Russia. In 1977 we organized
there a conference on global analysis which attracted a
stellar list of participants, including V.I. Arnold. During
this conference I asked Arnold to give a lecture for our
undergraduate students. He readily agreed and gave
an extremely interesting lecture about stability of the
inverse pendulum – and even made a demonstration
prepared with a help of one of our professors, Alesha
Zhubr. Arnold had certain pedagogical methods to keep
the audience awake. During his lectures he liked to
make small mistakes expecting students to notice and
correct him. Apparently, this method worked quite well
at the Moscow University. Following the same routine
during his Syktyvkar lecture, he made an obvious com-
putational error – something like forgetting the minus
sign in the formula (cosx)′ = − sinx – and expected
somebody in the audience to correct him. Yet no one
did, and he had to continue with the computation,
which, of course, went astray: the terms which were
supposed to cancel, did not. Very irritated, Arnold
erased the blackboard and started the computation all
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A talk at Syktyvkar, 1976

over again, this time without any mistakes. After the
lecture, he told me that the undergraduate students
at Syktyvkar University are very bad. Next day, after
my regular class, a few students came to me and asked
how is it possible that such a famous mathematician is
making mistakes in differentiating cosx?

Whenever I happened to be in Moscow, which was
not very often, Arnold usually invited me to visit his
and his wife Elya’s hospitable home. When he moved
to a new apartment in Yasenevo on the outskirts of
Moscow, he told me over the phone how to get there.
In particular, I was instructed to walk south when I
get out of the metro station. When I got to that point
there was a dark gray late winter afternoon, and it was
quite a challenge to figure which direction I should go.

Once he ran a psychological test on me to determine
which of my brain hemispheres is the dominant one.
To his satisfaction, the test showed that it was the left
one – which, according to Arnold, meant that I have a
geometric rather than algebraic way of thinking. During
another visit, I was deeply honored when he told me
that while he files most of the preprints systematically,
I am among the few people who are assigned a personal
folder.

Over the years I gave a number of talks at his seminar
with a variable success. The most disastrous was my
last talk in 1985. Shortly before one of my trips to
Moscow, Misha Gromov sent me a preliminary version
of his now very famous paper “Pseudoholomorphic
curves in symplectic geometry”, which is one of the
major foundational milestones of symplectic topology.
I was extremely excited about this paper, and thus
volunteered to talk about it at Arnold’s seminar. I
think that I was at this moment the only person in
Soviet Union who had the paper. Arnold heard about
Gromov’s breakthrough but did not see the paper yet.
After a few minutes of my talk, Arnold interrupted me
and requested that before continuing I should explain
what is the main idea of the paper. This paper is full of
new ideas and, in my opinion, it is quite subjective to
say which one is the main one. I made several attempts
to start from different points, but Arnold was never
satisfied. Finally, towards the end of the 2-hour long
seminar I said something which Arnold liked. “Why

did you waste our time and did not start with this from
the very beginning?”, he demanded.

Vladimir Igorevich made two long visits to Stanford.
During his first quarter-long visit Arnold was giving a
lecture course, but made it a rule for himself to go every
morning for a long bike ride into the hills (called Santa
Cruz mountains) surrounding Stanford. I have heard
a lot of stories about Arnold’s superhuman endurance
and his extremely risky adventures, especially in his
younger years. I can testify that almost 60 years old
Arnold at Stanford was also very impressive. On a
windy day after swimming in our cold Pacific Ocean,
where the water temperature is usually around 13◦C, he
refused a towel. He had a very poor bike which was not
especially suited for mountain biking. Yet he went with
it everywhere, even over the roads whose parts were
destroyed by a mud slide, and where he had to climb
clutching to the tree roots, hauling his bike on his back.
During one of these trips, Vladimir Igorevich met a
mountain lion. He described this encounter in one of his
short stories. Both Arnold and the lion were apparently
equally impressed with the meeting. Many years later,
during his second vist to Stanford, Arnold again went
to the same place hoping to meet the mountain lion.
Amazingly, the lion waited for him there! I am also
fond of hiking in those hills, yet neither I, nor any of
people I know, ever met a mountain lion there.

When he was leaving Stanford, Vladimir Igorevich
gave me a present – a map of local hills, on which he
marked several interesting places which he discovered,
such as an abandoned apple farm or a walnut tree
grove.

In between the two visits Arnold had a terrible bike
accident in Paris which he barely survived. It was a
great relief to see him active again when I met him in
Paris two years later. He proudly told me that during
this year he wrote 5 books. “One of these books”, he
said, “is coauthored with two presidents. Can you guess
with which ones?” I certainly could not guess that these
were Vladimir Putin and George W. Bush.

During his last visit to Stanford and Berkeley a
year ago, Arnold gave two series of lectures – one for
“Stanford professors”, as he called it, and the other for
the school age children at Berkeley Math Circles. There
is no telling which of these two groups of listeners
Vladimir Igorevich preferred. He spent all his time
preparing for his lectures for children and even wrote a
book for them. Lectures at Stanford were an obvious
distraction from that main activity. Each Stanford
lecture he would usually start with a sentence like
“What I am going to talk about now is known to most
kindergarten children in Moscow, but for Stanford
professors I do need to explain this”. What followed
was always fascinating and very interesting.

It is hard to come to terms that Vladimir Igorevich
Arnold is no longer with us. It is certainly true,
though a common place to say, that Arnold was a
great and extremely influential mathematician, that
he created several mathematical schools, and that his
vision and conjectures shaped a large part of modern
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Mathematics. But besides all that, he was a catalyst
for the mathematical community. He hated and always
fought mediocrity everywhere. With his extreme and,
sometimes intentionally outrageous claims he kept
everybody on guard, not allowing to comfortably fall
asleep.

His departure is also painful to me because there
are several unfulfilled mathematical promises which I
made to him but never had time to finish. Though it is
too late, I will do it now as a priority.

3. V. I. Arnold, as I have seen him, by Yulij
Ilyashenko

A student, visiting his schoolmaster in math, the famous
and severe Morozkin. A radiant slim youth, almost a
boy. This was Arnold as I first saw him, more than fifty
years ago.

A graduate student (in 1960), conducting tutorials
in honors calculus (taught to freshmen at Mekhmat,
the Department of Mechanics and Mathematics of the
Moscow State University). There was a permanent kind
of smile on his face, his eyes were sparkling and when he
looked at you, a wave of a good will would come forth.

From 1968 to 1986 I had the privilege of working
with Arnold at the same section of Mekhmat, called
the “Division of Differential Equations.” It was shaped
by Petrovski, and chaired by him until his premature
death in 1973. When Arnold joined the Division, it was
full of the best experts in differential equations, partial
and ordinary. Besides Arnold and Petrovski, the faculty
of the Division included stars of the elder generation
(who were then in their thirties and forties): Landis,
Oleinik, Vishik, as well as brilliant mathematicians of
Arnold’s generation: Egorov, Kondratiev, Kruzhkov,
and others.

The first glorious results of Arnold are described
in other papers in this collection. Let me turn to
differential equations, a subject whose development I
have been closely following. Needless to say that these
are personal remarks, not a complete history.

In 1965 Arnold came back from France where he
spent almost a year. From there he brought a keen
interest in the newborn singularity theory, of which he
became one of the founding fathers. He also brought
the philosophy of general position invented by René
Thom, which became sort of a compass in Arnold’s
investigations in differential equations and bifurcation
theory.

In the form that Arnold gave to it, this philoso-
phy claimed that one should first investigate objects
in general position, then the simplest degenerations,
together with their unfoldings. It makes no sense to
study degenerations of higher codimension until those
of smaller codimension have been investigated.

In 1970 he published a short paper [6] where a
strategy of developing any kind of local theory based
on the above philosophy was suggested. He also defined
algebraically solvable local problems. He started to call
them “trivial,” but later stopped doing that. “Let us

Vladimir Arnold, 1957

forget the overloaded term,” he once told me about this
word. In the same paper he also stated that the problem
of distinguishing center and focus is trivial. Bruno
challenged this statement, and Ilyashenko proved that
the center-focus problem is algebraically unsolvable
(1972).

Also in 1970 Arnold proved that the problem of
Lyapunov stability is algebraically unsolvable. He con-
structed a 3-parameter family in the space of high-order
jets, where the boundary of stability is non-algebraic.
At the same paper he wrote: “One may expect that
the Lyapunov stability, having lost algebraicity and
no more restricted by anything, may present some
pathologies on the set theoretical level...” He also
suggested that the problem may be algorithmically
unsolvable. This conjecture is still open for futher
development. In the mid-’70s it turned out that a
non-algebraic boundary of Lyapunov stability occurs in
unfoldings of degenerations of codimension three in the
phase spaces of dimension four. This was discovered
by Shnol’ and Khazin, who investigated the stability
problem in the spirit of Arnold, and studied all the
degenerate cases up to codimension three.

In 1969 Bruno defended his famous doctoral thesis
about analytic normal forms of differential equations
near singular points. One of his results is the so called
Bruno condition: a sufficient condition for the germ of
a map to be analytically equivalent to its linear part.
In dimension one, Yoccoz proved the necessity of this
condition (1987); this result was rewarded by a Fields
medal that he got in 1994. So the problem is still in
the focus of interest of the mathematics community.
But let us get back to the late 60’s. In his review of
the Bruno thesis, Arnold wrote: “The existing proofs
of the divergence [of normalizing series] are based on
computations of the growth of coefficients and do not
explain its nature (in the same sense as the computation
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With students of Moscow Mathematics Boarding
School, 1960s

of the coefficients of the series arctan z does not explain
the divergence of this series for |z| > 1, although it
proves this divergence).” Following this idea, Arnold
tried to find a geometric explanation of the divergence
of normalizing series when the denominators are too
small. He predicted an effect which he later called
“materialization of resonances.” An “almost resonant”
germ of a vector field that gives rise to “exceedingly
small denominators” is close to a countable number
of resonant germs. Under the unfolding of any such
germ, an invariant manifold bifurcates from a union of
coordinate planes, and remains in a small neighborhood
of the singular point of this almost resonant germ.
These invariant manifolds, which constitute a countable
number of “materialized resonances,” accumulate to
the singular point and prevent the linearization.

A. Pyartli, a student of Arnold, justified this heuristic
description in his thesis in the early 70’s for vector fields
with planar saddles. He continued the investigation, and
in 1976 found an invariant cylinder, a materialization
of resonances for a germ of a planar map. Then he
asked Arnold “Why does such a cylinder prevent the
linearization?” Why, indeed?! Arnold himself started
thinking about the problem, and came to the theory of
normal forms for neighborhoods of embedded elliptic
curves. An outlook of this theory is given in his book
[12]. As usual, this new path was paved by the followers
of Arnold: Pyartli, Ilyashenko, Saveliev, Sedykh, and
others.

Arnold’s approach to the local bifurcation theory
produced a genuine revolution. In the late 60’s he
suggested to his students two problems: to prove a
reduction principle that excludes excessive “hyperbolic
variables” from any local bifurcation problem, and
to study the first really difficult bifurcation problem
in codimension two. The first problem was solved by
A. Shoshitaishvili, the second one by R. Bogdanov. “It
was not by chance that I launched two different people
in two directions simultaneously”, Arnold said later
to me. Arnold was especially proud that Bogdanov
proved the uniqueness of the limit cycle that occurs
under the perturbation of a generic cuspidal singular
point. F. Takens investigated independently the same

codimension two bifurcation as Bogdanov; it is now
named the “Bogdanov-Takens” one.

In [8] Arnold described the new approach to the
theory, and listed all problems that occur in the study
of local bifurcations of singular points of vector fields
in codimension two. This was a long lasting program.
J. Guckenheimer and N. Gavrilov made important
contributions to its development; final solutions were
obtained by H. Zoladec (in the mid-80’s), again under
the (nonofficial) supervision by Arnold.

In the middle of the 70’s Arnold himself consid-
ered another local bifurcation problem in codimension
two, the one for periodic orbits. He discovered strong
resonances in the problem and predicted all possible
unfoldings occurring in generic perturbations of the
Poincaré maps with these resonances (1977). There
were four of them. The first case was reduced to
Bogdanov-Takens; two other cases were investigated by
E. Horosov (1979), a graduate student of Arnold, in his
PhD thesis. The fourth case, the famous resonance 1 :
4, was investigated by A. Neishtadt, F. Berezovskaya,
A. Khibnik (influenced by Arnold), and B. Krauskopf, a
student of Takens. The problem that remains unsolved
for bifurcations of codimension two is the existence
of very narrow chaotic domains in the parameter and
phase spaces.

Later local bifurcations of codimension three were
investigated by Dumortier, Roussarie, Sotomayor, and
others. The bifurcation diagrams and the phase por-
traits became more and more complicated. It became
clear that it is hopeless to get a complete picture in
codimension four. The new part of the bifurcation
theory started by Arnold and his school seems to be
completed by now. What is described above is a very
small part of the new domains which were opened in
mathematics by Arnold.

One should not forget that Arnold also inspired
many discoveries in oral communications, while no
trace of this influence is left in his publications. For
instance, he discovered “hidden dynamics” in various
problems of singularity theory. This means that a
classification problem for singularities often gives rise,
in a non-evident way, to a classification problem for
special local maps. Thus, he inspired the solution by
S. Voronin (1982) of the local classification problem for
singularities of envelopes for families of planar curves,
and the discovery of quite unexpected Ecalle-Voronin
moduli of the analytic classification of parabolic fixed
points (1981).

Arnold suggested a sketch of the proof of analyt-
ic unsolvability of the Lyapunov stability problem
(Ilyashenko, 1976). Only later did I understand that,
honestly speaking, it should have been a joint work.

In 1980 he pointed out that our joint work with
A. Chetaev on an estimate of the Hausdorff dimension
of attractors might be applied to the 2D Navier-Stokes
equation. This gave rise to an explicit estimate of the
Hausdorff dimension of these attractors (Ilyashenko,
1982-83), a first step in the subject later developed by
O. Ladyzhenskaya and M. Vishik with his school.
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V. Arnold and Yu. Ilyashenko, 1997

This is only my personal experience, a minor part
of the great panorama of Arnold’s influence on con-
temporary mathematics. He had a very strong feeling
of mathematical beauty, and his mathematics was
at the same time poetry and art. From my youth, I
considered Arnold as a Pushkin in mathematics. At
present, Pushkin is a beloved treasure of the Russian
culture. But during his life, he was not at all treated as
a treasure.

The same is true for Arnold. His life in Russia before
Perestroika, was in no way a bed of roses. I remember
very well how we, young admirers of Arnold, expected
in 1974 that he would be awarded the Fields medal
at the ICM at Vancouver. He did not receive it, and
the rumor was that Pontryagin, the head of the Soviet
National Mathematics Committee, at the discussion of
the future awards said: “I do not know the works of
such a mathematician.” For sure, it could not be the
personal attitude of Pontryagin only, it was actually
the position of the Soviet Government itself. Three
medals instead of four were awarded that year. Much
later Arnold wrote that the fourth medal was intended
for him, then awarded to nobody.

In 1984, a very skillful baiting of Arnold was or-
ganized at Mekhmat. As a result, he had a serious
hypertension attack. His election as a corresponding
member of the Soviet Academy of Sciences stopped the
baiting, but his enemies tried (though unsuccessfully)
to renew it five years later.

In 1986 Arnold decided to quit Mekhmat and to
move to the Steklov Institute. Yet he wanted to keep
a half-time position of Professor at Mekhmat. Only
after considerable efforts, did he get the desired half-
time position. I tried to convince Arnold not to quit
Mekhmat. I asked him “Dima, who may say, following
Louis XIV’s ‘L’etat s’est moi,’ Mekhmat is me?” “Well,”
he answered, “I guess NN” (he named an influential
party member at the Department). “No, Dima, YOU
are Mekhmat”. But he did not listen.

In 1994 he quit Mekhmat completely. He was offend-
ed. He taught a course and a seminar, and suddenly
he was informed that this load was insufficient for
the half-time position of Professor, but only for a

quarter-time position (a status that does not, in fact,
exist). He spoke with the head of the Mekhmat Human
Resources. This was an aged woman who maintained
her position from the communist times. “She screamed
at me,” said Arnold with a sort of surprise. Then he
resigned from the Moscow State University.

Needless to say, in such an environment the students
of Arnold were not hired at Mekhmat. The only
exceptions were N. Nekhoroshev and A.Koushnirenko
hired in the early 70’s, and much later A. Varchenko. I
remember two other attempts, both unsuccessful. At
the same time, the best of the best Mekhmat students
asked Arnold to be their advisor. So, Mekhmat rejected
the best of the best of its alumni. The same happened
with students of Manin, Kirillov, Gelfand... At the end
of the 80’s, a critical mass of excellent mathematicians
not involved in the official academic life had accumu-
lated. Following a suggestion of N.N. Konstantinov, a
well known educator and organizer of mathematical
olympiads, these mathematicians decided to create
their own university. In 1991, a group of leading Russian
mathematicians formed a Council and established a
new Independent University of Moscow, IUM. This
group included the following members of the Russian
Academy of Sciences: V.I. Arnold (chairman of the
Council), S.P. Novikov, Ya.G. Sinai, L.D. Faddeev,
V.A. Vassiliev, and the following professors: A.A. Beilin-
son, R.L. Dobrushin, B.A. Dubrovin, A.A. Kirillov,
A.N. Rudakov, V.M. Tikhomirov, A.G. Khovanskii,
M.A. Shubin. Professors P. Deligne and R. MacPherson
of Princeton and MIT also played crucial roles in the
founding of the Independent University.

Arnold was very enthusiastic about the new uni-
versity, and in the first years of its existence did a
lot to shape its spirit and teaching style. Together
with the first Dean of the College of Mathematics of
the IUM, A. Rudakov, Arnold thoroughly discussed
the programs, and he himself taught a course on
Partial Differential Equations. Under his influence, the
Independent University became one of the focal centers
of the Russian mathematical life.

In 1994 another educational institution, the Moscow
Center of Continuous Mathematical Education (MC-
CME), was created. From the very beginning, Arnold
was the head of the board of trustees of this Center.
The Center, headed by I. Yashchenko, the Director,
became a very influential institution in the Russian
mathematical education, and a powerful tool in the
struggle against the modern obscurantism. Arnold was
one of the leaders of that struggle.

In 2005 Pierre Deligne together with the IUM faculty
organized a contest for young Russian mathematicians.
This contest was funded by Deligne from his Balzan
prize (and named after him) with the goal “to support
Russian mathematics, struggling for survival.” The
funds of the contest were strictly limited. In 2006
Arnold met D. Zimin, the head of “D.B. Zimin’s charity
foundation Dynasty,” and convinced him to establish a
similar “Dynasty contest.” Now the contest has become
permanent, Lord willing and the creek don’t rise, as
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the proverb says. This is only one of the examples of

the long lasting influence of Arnold on the Russian

mathematical life.

Arnold’s talks were always special events. He began

giving lectures at Mekhmat in September 1961, about

the newborn theory, later named KAM (Kolmogorov–

Arnold–Moser). A rumor spread among the students

that “Arnold has solved problems that Poincaré failed

to solve.” His lectures were very fast and intense; yet

they attracted the best students of the Department. He

repeated this course twice, in ’62 – ’63 and ’63 – ’64.

Since then he gave brilliant courses in Theoretical

Mechanics, Ordinary Differential Equations, Supplemen-

tary Chapters of ODE, Singularity Theory, Geometric

Theory of PDE, and many others. All these courses

gave rise to world famous books, written by Arnold,

sometimes with his students. In 1968 Arnold started

teaching a course in ODE that became, in a sense, a

course of his life. He taught it until late eighties every

year, except for sabbaticals.

Arnold completely changed the face of the disci-

pline. His presentation was coordinate-free: all the

constructions were invariant with respect to coordinate

changes. “When you present material in coordinates,”

he said, “you study your coordinate system, not the

effect that you want to describe.” His language was

quite different from that of the previous textbooks and

courses: diffeomorphisms, phase flows, rectification of

vector fields, exponentials of linear operators... The

language of pictures was even more important in his

course than that of formulas. He always required a

student to present the answer in both ways, a formula

and a figure, and to explain the relation between them.

He drastically renewed the problem sets for the course:

propagation of rays in non-uniform media and geodesics

on surfaces of revolution, phase portraits of the Newton

equation with one degree of freedom, images of the unit

square under linear phase flows - students were expected

to draft all of these even without explicit calculations

of the corresponding solutions. In the first years the

course was difficult both for students and teaching

assistants. Later on it smoothed out, and became one

of the highlights of the Mekhmat curriculum.

All his life V.I. Arnold was like a star that shines,

sparkles, and produces new life around it.

4. On V.I. Arnold and hydrodynamics, by Boris
Khesin

Back in the mid-80s Vladimir Igorevich once told

us, his students, how different the notion of “being

young” (and in particular, being a young mathemati-

cian) is in different societies. For instance, the Moscow

Mathematical Society awards an annual prize to a

young mathematician under 30 years of age. The Fields

Medal, as is well known, recognizes outstanding young

mathematicians, whose age does not exceeds 40 in the

year of the International Congress. Both of the above

requirements are strictly enforced.

V. Arnold and B. Khesin, Toronto 1997

This can be compared with the Bourbaki group,
which comprises young French mathematicians and
which, reportedly, has an age bar of 50. However, as
Arnold elaborated the story, this limit is more flexible:
upon reaching this age the Bourbaki member undergoes
a “coconutization procedure.” The term is derived from
a tradition of some barbaric tribe that allows its chief to
carry out his duties until someone doubts his leadership
abilities. Once the doubt arises, the chief is forced to
climb to the top of a tall palm tree, and the whole tribe
starts shaking it. If the chief is strong enough to get
a good grip and survives the challenge, he is allowed
to climb down and continue to lead the tribe until
the next “reasonable doubt” in his leadership crosses
someone’s mind. If his grip is weak and he falls down
from the 20-meter-tall tree, he obviously needs to be
replaced and so the next tribe chief is chosen. This tree
is usually a coconut palm, which gave the name to the
coconutization procedure.

As far as the coconutization in the Bourbaki group
is concerned, according to Arnold’s story, the unsus-
pecting member who reaches 50 is invited, as usual,
to the next Bourbaki seminar. Somewhere in the
middle of the talk, when most of the audience is
already half-asleep, the speaker, who is in the game
for that occasion, inserts some tedious half-a-page-long
definition. It is at this very moment that the scrutinized
(“coconutized”) member is expected to interrupt the
speaker by exclaiming something like “But excuse me,
only the empty set satisfies your definition!” If he does
so he has successfully passed the test, and will remain
a part of Bourbaki. If he missed this chance, nobody
would say a word, but he would probably not be invited
to the meetings any longer...

Arnold finished this story by quoting someone’s
definition of youth in mathematics, which he liked best:
“a mathematician is young as long as he reads works
other than his own”!

Soon after this “storytelling” occasion Arnold’s
50th anniversary was celebrated: in June 1987 whole
his seminar went for a picnic in a suburb of Moscow.
Among Arnold’s presents there were a stamp “Return to
Arnold” to mark the reprints he gave to his students to
work on, a mantle with a nicely decorated “swallowtail,”
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New Haven, 1993

one of low dimensional singularities, and such. But,
most importantly, he was presented with a poster
containing the crossword on various notions from his
many research domains. Most of questions were rather
intricate, which predictably did not prevent Arnold
from easily cracking virtually everything. But one
question remained unresolved: “A simple alternative
of life” for a 5-letter word (in the English translation).
None of the ideas worked for quite some time. After
a while, having made no progress on this question
Arnold pronounced sadly: “Now I myself have been
coconutized...” But a second later he perked up, a
bright mischievous expression on his face: “This is a
PURSE”! (In addition to the pirate’s alternative “Purse
or Life”, the crossword authors meant the term “purse”
in singularity theory standing for the description of
the bifurcation diagram of the real simple singularity
D+

4 , also called hyperbolic umbilici – hence the hint on
“simple” alternative.)

Arnold’s interest to fluid dynamics can be traced
back to his “younger years”, whatever definition one is
using for that purpose. His 1966 paper in the Annales
de l’Institut Fourier had an effect of a bombshell. Now,
over 40 years later, virtually every paper related to
the geometry of the hydrodynamical Euler equation or
diffeomorphism groups cites this Arnold’s work on the
starting pages. In the next 4-5 years Arnold laid out the
foundations for the study of hydrodynamical stability,
for the use of Hamiltonian methods there, described
the topology of steady flows, etc.

Apparently, Arnold’s interest in hydrodynamics is
rooted in Kolmogorov’s turbulence study and start-
ed with the program outlined by Kolmogorov for
his seminar in 1958-1959. Kolmogorov conjectured
stochastization in dynamical systems related to hydro-
dynamical PDEs as viscosity vanishes, which would
imply the practical impossibility of long-term weather
forecasts. Arnold’s take on hydrodynamics was, however,
completely different from Kolmogorov’s, and involved
groups and topology.

The Euler equation of an ideal incompressible fluid
filling a domain M in Rn is the evolution equation

∂tv + (v,∇)v = −∇p

on the fluid velocity field v, where this field is assumed
to be divergence-free and tangent to the boundary of
M (while the pressure p is defined uniquely modulo
an additive constant by these conditions on v). In
1966 Arnold showed that this Euler equation can be
regarded as the equation of the geodesic flow on the
group SDiff(M) of volume-preserving diffeomorphisms
of the domain M . The corresponding metric on this
infinite-dimensional group is the right-invariant L2

metric defined by the kinetic energy E(v) = 1
2
‖v‖2L2(M)

of the fluid. (The analysis of Sobolev spaces related
to this group-theoretic framework in incompressible
fluid dynamics was later furnished by D. Ebin and
J. Marsden.) Arnold’s geometric view on hydrodynamics
opened a multitude of different research directions:

– other groups and metrics. Many other evolution
equations turned out to fit this universal approach
suggested by Arnold, as they were found to describe
geodesic flows on appropriate Lie groups with respect
to one-sided invariant metrics. This shed new light on
the corresponding configuration spaces and symme-
tries behind the relevant physical systems, and such
geodesic equations are now called the Euler–Arnold
equations. Here are several examples developed by
many authors. The group SO(3) with a left-invariant
metric corresponds to the Euler top (this example
appeared in the original paper by Arnold along with
the hydrodynamical Euler equation). Similarly, the
Kirchhoff equations for a rigid body dynamics in a fluid
describe geodesics on the group E(3) = SO(3) nR3 of
Euclidean motions of R3. In infinite dimensions, the
group of circle diffeomorphisms Diff(S1) with the right-
invariant L2-metric gives the inviscid Burgers equation,
while the Virasoro group for three different metrics, L2,
H1, and Ḣ1, produces respectively the Korteweg-de
Vries, Camassa-Holm, and Hunter-Saxton equations,
that are different integrable hydrodynamical approx-
imations. The self-consistent magnetohydrodynamics
describing simultaneous evolution of the fluid and mag-
netic field corresponds to dynamics on the semidirect
product group SDiff(M) n SVect(M) equipped with
an L2-type metric. Yet another interesting example,
known as the Heisenberg chain or Landau–Lifschitz
equation, corresponds to the gauge transformation
group C∞(S1, SO(3)) and H−1-type metric. Teasing
physicists Arnold used to say that their gauge groups
are too simple to serve as a model for hydrodynamics.

– Arnold’s stability and Hamiltonian methods in
hydrodynamics. The geodesic property of the Euler
hydrodynamical equation implied that it is Hamiltonian
when considered on the dual of the Lie algebra of
divergence-free vector fields. Arnold proposed to use the
corresponding Casimir functions, that are invariants
of the flow vorticity, to study stability of steady fluid
flows. Arnold’s stability is now the main tool in the
study of nonlinear stability of fluid motions and MHD
flows. In particular, he proved that planar parallel flows
with no inflection points in their velocity profiles are
stable. (One should note that for Hamiltonian systems
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stability in linear approximation is always neutral and
inconclusive about the stability in the corresponding
nonlinear problem. So the result on a genuine Lyapunov
stability of certain fluid flows was particularly rare and
valuable.)

– study of fluid Lagrangian instability and curvatures
of diffeomorphism groups. Negative sectional curvature
on manifolds implies exponential divergence of geodesics
on them. In the same 1966 paper Arnold’s launched
the first computations of curvatures for diffeomor-
phism groups. Negativity of most of such curvatures
for the groups of volume diffeomorphisms suggested
Lagrangian instability of the corresponding fluid flows.
By applying this to the the atmospheric flows he gave
a qualitative explanation of unreliability of long-term
weather forecasts (thus answering in his own way the
problem posed by Kolmogorov in the 50s). In particular,
Arnold estimated that due to exponential divergence of
geodesics in order to predict the weather two months
in advance one must have initial data on the state of
the earth atmosphere with five more digits of accuracy
than that of the expected prediction. In practical terms
this means that a dynamical weather forecast for such
a long period is impossible.

The hydrodynamical Appendix 2 in the famous
Classical Mechanics by Arnold,8 where one can find the
details of above-mentioned calculation for the earth
atmosphere, also contains one of widely cited Arnold’s
phrases: “we agree on a simplifying assumption that
the earth has the shape of a torus,” which is followed
by his calculations for the group of area preserving
torus diffeomorphisms. It is remarkable that the later
curvature calculations for the group of sphere diffeomor-
phisms (performed by A. Lukatskii) gave exactly the
same order of magnitude and quantitative estimates

8Speaking of writing, once I asked Arnold how he manages

to make his books so easy to read. He replied: “To make sure
that your books are read fast, you have to write them fast.”

His own writing speed was legendary. His book on invari-
ants of plane curves in the AMS University Lecture series

was reportedly written in less than two days. Once he pre-

tended to complain: “I tried, but failed, to write more than
30 pages a day... I mean to write in English: of course, in

Russian, I can write much more!”

for the curvature, and hence for the atmospheric flows,
as original Arnold’s computations for the torus!

– topology of steady flows. One of the most beautiful
observations of Arnold (and one of the simplest –
it could have belonged to Euler already!) was the
description of topology of stationary solutions of the
3D Euler equation. It turns out that for a “generic”
steady solution the flow domain is fibered (away from
a certain hypersurface) into invariant tori or annuli.
The corresponding fluid motion on each torus is either
periodic or quasiperiodic, while on each annulus it
is periodic. This way a steady 3D flow looks like a
completely integrable Hamiltonian system with two
degrees of freedom.

The nongeneric steady flows include Beltrami fields
(those collinear with their vorticity) and, in particular,
the eigenfields for the curl operator on manifolds.
The latter include the so called ABC flows (after
Arnold–Beltrami–Childress), the curl eigenfields on the
3D torus, which happened to have become a great
model for various fast dynamo constructions.

– fast dynamo and magnetohydrodymanics. Arnold’s
interest in magnetohydrodynamics was to a large extent
related to his acquaintance with Ya. Zeldovich and
A. Sakharov. One of the results of their interaction at the
seminars was the Arnold-Ruzmaikin-Sokolov-Zeldovich
model of the fast dynamo on a 3D Riemannian manifold
constructed from Arnold’s cat map on a 2D torus. For
a long time this was the only dynamo construction
allowing complete analytical study for both zero and
positive magnetic dissipation.

– the asymptotic Hopf invariant. Finally, one of the
gems of topological hydrodynamics is 1974 Arnold’s
study of the asymptotic Hopf invariant for a vector field.
He proved that for a divergence-free vector field v in
a 3D simply-connected manifold M the field’s helicity
H(v) :=

∫
M

(curl−1v, v) d3x, is equal to the average
linking number of all pairs of trajectories of v. This
theorem simultaneously generalized the Hopf invariant
from maps S3 → S2 to arbitrary divergence-free vector
fields in S3, enriched K. Moffatt’s result on the helicity
of linked solid tori, described topology behind the con-
servation law of the 3D Euler equation, and provided the
topological obstruction to the energy relaxation of mag-
netic vector fields. This elegant theorem stimulated a
tide of generalizations to higher-dimensional manifolds,
to linking of foliations, to higher linkings, and to energy
estimates via crossing numbers. In particular, there was
substantial progress in the two directions suggested in
the original 1974 paper: the topological invariance of the
asymptotic Hopf numbers for a large class of systems

was proved by J.-M. Gambaudo and É. Ghys, while the
Sakharov–Zeldovich problem on whether one can make
arbitrarily small the energy of the rotation field in a
3D ball by a volume-preserving diffeomorphism action
was affirmatively solved by M. Freedman.

To summarize, Arnold, virtually single-handedly,
spawned a new domain, now called topological fluid
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Vladimir Arnold lecturing

dynamics. His contribution to this area of active current

research is as vast and foundational as his contribution

to singularity theory and KAM.

5. Topology in Arnold’s work, by Victor
Vassiliev

Arnold has worked comparatively little on topology

for topology’s sake. His topological studies are usually

motivated by specific problems from other areas of math-

ematics and physics: algebraic geometry, dynamical

systems, symplectic geometry, hydrodynamics, geomet-

ric and quantum optics... So, the (very significant) place

of topological studies in his work is well balanced with

the (equally very significant) place and applications of

Topology in the entire contemporary mathematics.

The main achievement in a number of his works is

a proper recognition and formulation of a topological

problem, allowing topologists to enter the area with

their strong methods. A huge part of Arnold’s work is

contained not in his own articles, but in well-formulated

problems and hints that he gave to his students and

other researchers, see especially [13]. So, I will discuss

below such Arnold’s hints as well, and what followed

from them.

Superpositions of functions

Case of real functions: Kolmogorov-Arnold’s

theorem and Hilbert’s 13th problem. This theo-

rem states that every continuous function of n > 2

variables can be represented by a superposition of

functions in 2 variables (and the superposition can

be taken in a particular form). The first approach to

this problem (based on the notion of the Kronrod tree

of connected components of level sets) was found by

Kolmogorov (1956), who did not, however, overcome

some technical low-dimensional difficulties and proved

only the same theorem with 2 replaced by 3. The final

effort was made by (then 19-years old) Arnold.

This theorem gives a negative solution to (probably

the most natural exact understanding of) the following

Hilbert 13-th problem:

...it is probable that the root of the
equation of the seventh degree is a
function of its coefficients which does
not belong to this class of functions
capable of nomographic construction,
i. e., that it cannot be constructed by a
finite number of insertions of functions
of two arguments. In order to prove
this, the proof would be necessary that
the equation of the seventh degree

(1) t7 + xt3 + yt2 + zt+ 1 = 0

is not solvable with the help of any
continuous functions of only two argu-
ments.

A widespread belief concerning this problem is as
follows: “with the help of functions” in its last sentence
means that a solution t(x, y, z) of (1) should be indeed
given by a function of the form described in the first one,
i.e. by a superposition of continuous functions of two
arguments. In this case the Kolmogorov-Arnold theorem
would give a direct negative answer to this problem.
Nevertheless, this understanding of the Hilbert’s ques-
tion is probably erroneous, because (1) does not define
any continuous function at all: the multi-valued function
t(x, y, z) defined by (1) does not have any continuous
cross-section on the whole of R3

(x,y,z). Indeed, such
negative-valued cross-sections do not exist already in a
small neighborhood of the polynomial

t7−14t3−21t2−7t+1 ≡ (t+1)3(t4−3t3+6t2−10t+1).

Such a neighborhood admits two positive-valued cross-
sections, but they obviously cannot be continued to the
polynomial t7 + 1. So, this direct understanding of the
Hilbert problem could be correct only under the (quite
improbable) conjecture that Hilbert has included in this
problem the question whether (1) defines a continuous
function on entire R3; in this case the problem would
have a positive solution. A more realistic assumption
is that “with the help of continuous functions of two
variables” means something more flexible, for example
that we can consider a triple of functions (χ, g1, g2) in
x, y, z, defined by such superpositions, and represent our
function t(x, y, z) by g1 in the area where χ > 0 and by
g2 where χ ≤ 0. However, in this case it is unclear why
Hilbert did not believe that the desired representation
(maybe with more functions χk and gi) does exist for
his particular function, which is piece-wise analytic
and certainly can be stratified by easy conditions into
pieces with very simple behavior. The most realistic
conjecture is that (like for many other problems) Hilbert
wrote a slightly obscure sentence specifically to let the
readers themselves to formulate (and solve) the most
interesting and actual exact statements: it is exactly
what Kolmogorov and Arnold actually did.

Complex algebraic functions and braid coho-
mology. Hilbert’s 13th problem, formally asking
something about real continuous functions, is neverthe-
less evidently motivated by the study of superpositions
of multi-valued algebraic functions in complex variables.

!!Not Supplied!! !!Not Supplied!! Notices of the AMS 13



Vladimir Arnold

A dream problem in this area is to solve literally the
same problem concerning such functions: moreover, this
problem was explicitly formulated in one of consequent
Hilbert’s works.

Arnold worked much on this problem, revising and
reformulating the proof of Ruffini-Abel theorem in topo-
logical terms of ramified coverings and their topological
invariants and trying to extend it to superpositions of
functions in more variables. Although the exact desired
theorem was not proved, a byproduct of this attack was
huge: among other topics, it contains the topological
theory of generalized discriminants, homological theory
of braid groups and theory of plane arrangements. A
particular result, the topological obstruction to the
representation by complete superpositions of functions
depending on few variables, was expressed in [5] in
the terms of cohomology of braid groups. Indeed, the
d-valued algebraic function t(x1, . . . , xd) given by

(2) td + x1t
d−1 + · · ·+ xd−1t+ xd = 0

defines a d-fold covering over the set Cd \ Σ of non-
discriminant points (x1, . . . , xd) (i.e. of polynomials (2)
for which all d values t(x) are different). This covering
defines (up to homotopy) a map from its base Cd \Σ to
the classifying space K(S(d), 1) of all d-fold coverings,
thus also a canonical map

(3) H∗(K(S(d), 1)→ H∗(Cd \ Σ).

If our algebraic function (2) is induced from another one
as in the definition of complete superpositions, then this
cohomology map factorizes through the cohomology
ring of some subset of the argument space of this new
algebraic function, hence the dimension of this space
cannot be smaller than the highest dimension in which
the map (3) is non-trivial.

This approach has strongly motivated the study of
the cohomology ring of the space Cd \ Σ (which is the
classifying space of the d-braid group), and, much more
generally, of the following objects:

Discriminants and their complements

Given a space of geometric objects (say, functions,
varieties, subvarieties, matrices, algebras, etc.), the dis-
criminant subset in it consists of all degenerate (in some
precise sense) objects: it may be the set of non-Morse
functions, or self-intersecting spatial curves, or degen-
erate (another version: having multiple eigenvalues)
operators... Usually one studies the complementary
space of non-singular objects. However, the seminal
Arnold’s reduction replaces the homological part of this
study by that of discriminant spaces. Namely, in [4]
Arnold exploits the Alexander isomorphism

(4) Hi(Cd \ Σ) ≡ H̄2d−i−1(Σ),

where H̄∗ means the homology of the one-point com-
pactification, and Cd is considered as the space of
all complex polynomials (2) in one variable t. This
reduction turned out to be extremely fruitful, because
the set of non-singular objects is usually open and does
not carry any natural geometric structure. To study
its topology, we often need to introduce some artificial
structures on it, like Morse functions, connections,
families of vector fields or plane distributions, etc.,
which can have singularities helping us to calculate
some topological invariants. On the other hand, the dis-
criminant varieties are genuinely stratified sets (whose
stratification corresponds to the hierarchy of singularity
types); this stratification allows one to calculate various
topological properties of these varieties, and hence
also of their complementary sets of generic objects.
Already in [4] this approach has brought some progress,
although the complete calculation of the group (4) was
done only later: by D. Fuchs for Z2-cohomology [14] and
by F. Cohen and F. Vainshtein for integral cohomology.

Using the same approach, Arnold has studied later
many other spaces of non-degenerate objects, namely,
spaces Pd \ Σk of real degree d polynomials R1 → R1

without roots of multiplicity ≥ k, k ≥ 3, spaces of
functions R1 → R1 (with a fixed behavior at infinity)
also having no zeros of multiplicity ≥ k (1989), spaces
of Hermitian operators with simple spectra (1995),
spaces of generic (or generic Legendrian) plane curves
(1994), etc.

Another very important Arnold’s idea in this area
was his favorite stabilization problem published first
in 1976 and repeated many times in seminars, see
problems 1975-19, 1980-15, 1985-7, 1985-22 in [13].
Formally speaking, the Alexander duality theorem is a
finite-dimensional result. Also, all spaces of objects, in
which this Arnold’s approach originally has lead to more
or less explicit results, were finite-dimensional spaces
considered as unfoldings of some particular objects.
For example, the space Cd of complex polynomials (2)
can be considered as an unfolding of the monomial td.
When the degree d grows, the cohomology groups of

14 Notices of the AMSVolume !!Not Supplied!!, Number !!Not Supplied!!



Stabilization of unfoldings

spaces Cd \Σ of non-discriminant polynomials stabilize
(to the cohomology of the infinite braid group), but
it was quite difficult to trace the stabilization process
in terms of the original calculations. Moreover, it was
unclear what happens with similar stabilizations for
objects more complex than just polynomials in one
variable, how to deal with similar infinite-dimensional
problems, and what is “the mother of all unfoldings”.
To attack this set of philosophical problems, Arnold
formulated a very explicit sample problem. First, he
noticed that the stabilization of cohomology groups
such as (2) is natural: if we have two singular objects,
one of which is “more singular” than the other, then the
parameter space of the unfolding of the simpler object
can be embedded into that of the more complicated
one. This map sends one discriminant into the other,
thus inducing the pull-back map of cohomology groups
of their complements. (For real polynomials t3 and t4

this embedding of parameter spaces of their unfoldings
t3 + at+ b and t4 + αt2 + βt+ γ is shown in the figure;
the discriminants drawn in this picture are the sets of
polynomials having multiple roots).

The respective Arnold’s problem was to determine
the stable (under all such pull-back maps) cohomology
groups of such complements of discriminants of isolated
singularities of holomorphic functions in Cn (and to
prove that they actually do stabilize, i.e., these stable
cohomology groups are realized by such groups for
some sufficiently complicated singularities). Solving
this problem, I have found in 1985 a method of
calculating homology groups of discriminants, which
behaves nicely under the embeddings of unfoldings
and thus gives an effective calculation of stable groups.
Some elaborations and byproducts of this calculation
method constitute a majority of my results on topology
of discriminants, including my first works on knot
theory. In the original problem on stable cohomology of
complements of discriminants of holomorphic functions,
this calculation gives us the following formula: the
desired stable cohomology ring for singularities in n

complex variables is equal to H∗(Ω2nS2n+1), where Ωk

is the k-fold loop space.
Moreover, this Arnold problem not only dealt with

the stabilization of particular finite-dimensional objects,
but it also gave an approach to the study of actual
infinite-dimensional function spaces.

Topology of pure braid groups and plane ar-
rangements

Together with the cohomology of the usual braid
groups (2) Arnold investigated also the pure braid
group, i.e. the fundamental group of the set of ordered
collections of d distinct points in C1. The classifying
space of this group is just the space Cd with all diagonal
hyperplanes {xi = xj for i 6= j} removed. Arnold’s
calculation of its cohomology group [2] became a sample
and a starting point of numerous generalizations and
initiated the so-called theory of plane arrangements.
The Arnold identity

ωij ∧ ωjk + ωjk ∧ ωki + ωki ∧ ωij = 0

for basic classes of this cohomology ring became later
one of main ingredients of Kontsevich’s construction of
the universal finite-type knot invariant.

Maslov index; Lagrange and Legendre Cobor-
dism

Lagrange manifolds are specific n-dimensional sub-
manifolds of the symplectic space R2n (or, more
generally, of the cotangent bundle of an arbitrary mani-
fold Mn). They occur in problems of geometric optics
as the manifolds into which all rays of light considered
in such a problem can be lifted without intersections,
and in quantum optics as a first step in obtaining an
asymptotic approximation of light diffusion. However,
further steps of this asymptotic description impose some
consistency condition: the composition of transition
functions relating their expressions in neighboring local
charts should define the identity operator when we go
along a closed chain of such charts. This condition is
best formulated in terms of a certain 1-cohomology
class of the Lagrange manifold, its Maslov index. If the
Lagrange manifold Ln ⊂ T ∗Rn is generic, then this
index can be defined as the intersection index with
the singular locus of the projection Ln → Rn to the
“physical” configuration space. It is important for this
definition, that for generic Lagrangian manifolds this
locus has a well-defined transversal orientation (so that
having crossing it we can always say whether we are
going to the positive or the negative side), and its
singular points form a subset of dimension at most
n − 3 in Ln (so that all homologous curves have one
and the same Maslov index). If Ln is orientable then
this index is even; the above self-consistency condition
requires that the value of this index on any closed curve
should be a multiple of 4. Arnold [1] has related this
index with the topology of the Lagrange Grassmann
manifold of all Lagrangian planes in the symplectic
R2n-space, i.e. of all planes that can be tangent to
some Lagrange submanifolds in this space. This settles
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immediately various problems related to the invariance
of the definition of the Maslov index, as well as to its
stability under deformations of the Lagrange manifold.

In 1980 Arnold initiated the theory of Lagrange
and Legendre cobordisms [11]. Light distribution in
the area defines light distribution on its border: for
instance, the reflected light on the wall is defined by
light of the entire room. This means that a Lagrange
manifold in the cotangent bundle of the room defines
its Lagrange boundary, which is a Lagrange manifold
in the cotangent bundle of the wall. The Legendre
manifolds are known to us mainly as resolutions of wave
fronts. The wave front evolving in space defines a wave
front of bigger dimension in the space-time. The fronts
in Mn corresponding to some instants T1 and T2 are
obviously defined by the big front in Mn × [T1, T2]; the
way in which they are obtained from this big front can
be generalized to the notion of the Legendre boundary.
Notice that both Lagrange and Legendre boundaries of
manifolds are not their boundaries and even not the
subsets in the usual sense: they are obtained from these
boundaries by symplectic and contact reductions.

Arnold introduced cobordism theories based on these
boundary notions and calculated the 1-dimensional
Lagrange and Legendre cobordism groups: they turned
out to be isomorphic to Z⊕ R and Z, respectively. The
Z-term in both answers is defined by the Maslov index,
the R-invariant of the Lagrange cobordism is given by∫
pdq. Later, Ya. Eliashberg and M. Audin, using the

Gromov-Lees version of the Smale-Hirsch h-principle
for Lagrange manifolds, have reduced the calculation
of Legendre cobordism groups in any dimension to the
standard objects of the cobordism theory, namely, to
homotopy groups of appropriate Thom spaces (over the
stable Lagrange Grassmann manifold).

At the same time, in the beginning of 1980, Arnold
asked me whether it is possible to extend the con-
struction of the Maslov index to cohomology classes of
higher dimensions, dual to more degenerate singular
loci of the Lagrangian projection Ln → Rn, than
just the entire singular set. The resulting cohomology
classes were expected to be closely related to the higher
cohomology classes of Lagrange Grassmannians, and to
give invariants of Lagrange and Legendre cobordisms.
The answer was found soon: I managed to construct the
desired characteristic classes in terms of the universal
complex of singularity types. Later, this theory was
nicely and strongly extended by M. Kazarian in terms
of equivariant homology.

On the other hand, the work with 1-dimensional
wave fronts lead Arnold to many essential problems
of contact geometry, such as the 4-cusps problem, see
the photograph above. Solutions of these problems by
Chekanov, Eliashberg, Pushkar’ and others made a
significant development of this area.

There are many other topological results in Arnold’s
works, including the major breakthroughs in real
algebraic geometry [7], [10], Arnold’s conjecture in
symplectic topology, the asymptotic Hopf invariant, the
vanishing homology theory of boundary singularities.

The Bowen lectures, Berkely, 1997

These topics are covered in other articles in this
collection.

6. Arnold and Symplectic Geometry, by Helmut
Hofer

V.I. Arnold was a character and a greater than life
figure. I never knew him extremely well, but we became
closer over the years and I learned to know him a
little bit more from the private side. He could be very
charming.

As a student I read Arnold’s wonderful book “Math-
ematical methods of classical mechanics”, and was
impressed by the ease how he was able to bring across
important ideas. I never expected to meet him in real
life.

I met him for the first time when I was a tenure track
professor at Rutgers University and was visiting the
Courant Institute. This was between 1986 and 1987, so
around three years before the Berlin wall and the iron
curtain came down. The Courant Institute had worked
hard to make it possible for Arnold to visit. I attended
one lecture of Arnold, which was remarkable in two
ways. There was great mathematics and something
one would not expect in a mathematics lecture. At
some point he went into tirade about how western
mathematicians are not giving proper credit to Russian
mathematicians. Most people in the audience took it
with some kind of amusement, but not all. Somebody
sitting besides me mumbled something along the lines
that we should have left him in Moscow. A year or so
later he attended parts of the symplectic year (1988)
at the MSRI in Berkeley. What I remember from his
visit was that at some point he decided to swim in the
San Francisco bay. One has to know that the locals do
not consider this as the best idea, since the currents
are quite unpredictable. The story which was told at
that time was that he almost drowned fighting the
currents. I thought to myself, that is a really interesting
multi-dimensional character pushing the envelope. I
recently asked Richard Montgomery about it, who had
an account on this story by Arnold himself. He had
concluded from the description that Arnold had tried to
swim from Marina Green to Marin (across the Golden

16 Notices of the AMSVolume !!Not Supplied!!, Number !!Not Supplied!!



Vladimir Igorevich

Gate Bridge) during ebb tide and at some point in
his own words “it felt like I hit a wall of current” and
“had to turn back”. The maximum ebb out of the San
Francisco Bay can be over 6 knots. If he wouldn’t have
returned then he would have been swept at least a mile
out to sea. Talking to Richard I also learned about
another story. He and Arnold went kayaking in the bay.
After an involuntary eskimo turn, Arnold insisted on
entering orthogonally into the path of an ongoing yacht
race, with 40 foot yachts going full speed being unable
to dodge a kayak. Richard still remembers his fear of
going down in mathematical infamy as the guy who
killed Arnold. As I said before Arnold was pushing the
envelope in real life as he did in mathematics.

One year later, in 1989, I became a full professor
at the Ruhr-Universität Bochum. Shortly afterwards
the Berlin wall came down with dramatic changes in
Eastern Europe. Soon a complete brain drain of the
Soviet Union became a concern and one day I found
myself, together with my colleague A. Huckleberry and
V. Arnold presiding over some research funding to allow
Russian mathematicians to spend longer periods with
a decent pay at Bochum. Arnold was very concerned
and I learned to know him somewhat better. Professor
Arnold became Dima.

Around 1994 I met him again. This time in Stanford.
Dima, Yasha (Eliashberg) and I went looking for
walnuts at the St. Andreas fault. I am sure it was
Dima’s idea. Knowing the “almost drowning version”
of Dima’s swimming expedition in the San Francisco
Bay I had quite high expectations for the afternoon.
However, there was no earthquake.

Around this point we started talking about mathe-
matics, specifically symplectic topology. His opening
bid was “Helmut you are using the wrong methods”
referring to pseudoholomorphic curves and I responded

with “I am sure you know something better. Make my
day!”. He liked to probe and enjoyed to see people’s
reactions. I think I did well that day.

In 1998 he introduced my plenary lecture at the ICM
in Berlin and we had a friendly chat before the talk.
The year before I had moved to the Courant Institute.
He said “Helmut, you should come back to Europe”. I
answered “No, Dima, I love New York’. But if it makes
you feel better consider me the agent of European
culture in the US”. I saw immediately that he liked
this sentence. We talked about some more things which
I rather thought stay between us. Of course, I should
have known! He made it all part of his introduction and
started by introducing me as the agent of European
culture in the US, to the delight of many, but that was
only the beginning and the rest is on video.

Dima had an amazing mathematical intuition and,
which at this point shouldn’t come as a surprise, was
daring enough to make conjectures, when others would
not dare to stick their neck out.

There are quite a number of Arnold conjectures
in symplectic geometry. However, there is one, which
meanwhile even people outside of the field know,
and which was the initial driving force behind the
development of symplectic geometry.

Arnold and Weinstein developed the modern lan-
guage of symplectic geometry. This could for example be
used to prove interesting perturbation results. However,
there were no global results. Arnold was the one who
raised these type of questions and the Arnold conjecture
I describe below is an example. Surprisingly the break
through due to Conley and Zehnder came from outside
of the field.

In the following I try to motivate the “Arnold
Conjecture”. One can understand it as an analogy
to the relationships between the Euler characteristic,
the Hopf index formula, and the Lefschetz fixed point
theorem. I haven’t seen anything in his writings pointing
out this analogy, but added it here as an intermediate
step which helps to understand the conjecture better.
Arnold describes a way of reasoning in Appendix 9 of
his before-mentioned book. The Poincaré twist theorem
can be seen as a special case of the two-dimensional
torus case of his conjecture. The general case would
be the generalization of the torus-case to arbitrary
closed symplectic manifolds. There is quite often a
difference between the original thought process and the
didactical cleaned version. From that point of view I
regret to never have asked him how he arrived at his
conjecture. The discussion below adds another point of
view constructing an analogy to a reasoning in topology.
I very much believe that Arnold was aware of this
analogy.

We start with a closed oriented manifold M and
a vector field X. The Euler characteristic χ(M) is a
classical topological invariant, which is a generalization
of the original concept introduced for polyhedra by
Euler, and which was fully generalized later by Poincaré.
If M is a smooth manifold Hopf’s index formula
establishes a relationship between the zeros of a vector
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field assumed to be transversal to the zero section and
the Euler characteristic of M :

χ(M) =
∑
m

i(X,m),

where i(X,m) = ±1 is the local index at a zero of X.
How can we generalize this? First we observe that

a diffeomorphism can be viewed as a generalization
of a vector field. Indeed, the collection of smooth
vector fields can be viewed as the Lie algebra of the
(Fréchet)-Lie group Diff(M), so as an infinitesimal
version of the latter. It is however not true that the
diffeomorphisms close to the identity are in the image
of the exponential map. This is consequence of only
being a Fréchet Lie group and a universal problem in
dealing with various sorts of diffeomorphism groups.
Let us make a conjecture, which will come out from
first going from the infinitesimal to the local to gain
some confidence. We fix as an auxiliary structure a
Riemannian metric with associated exponential map
exp. Assume that Φ is a diffeomorphism which is close
to the identity. Then we can write Φ in a unique way in
the form

Φ(m) = expm(X(m)),

for a small vector field X. Tranversality of X to the
zero-section is equivalent to Φ having not 1 in the
spectrum of its linearizations at fixed points. Most
importantly the fixed points for Φ correspond to the
zeros for X. Hence a generic diffeomorphism which is
close to the identity has an algebraic fixed point count
χ(M), where the sign is taken according to Φ′(m) being
orientation preserving or not. We can now make the
“daring conjecture” that this should hold for all generic
diffeomorphims isotopic to the identity. That turns out
to be correct and is, of course, a special case of the
Lefschetz fixed point formula.

What Arnold did in symplectic geometry is such a
daring conjecture in a more complicated context. We
start with a closed symplectic manifold (M,ω) and
in analogy to the previous discussion we generalize
the theory of functions on M rather than the theory
of vector fields. If f is a smooth function with all
critical points non-degenerate, then Morse theory says
its number of critical points is at least the sum of the
Betti numbers (for any coefficient field). Morse theory
also tells us that the algebraic count of critical points
is χ(M). Since we have a symplectic structure we can
associate to f a vector field Xf by the obvious formula

df = iXfω.

This is the so-called Hamiltonian vector field. Obviously
we are now back to the first discussion. However, with
the vector fields being more special, one would like
a stronger statement for a certain class of diffeomor-
phisms. This particular class of diffeomorphisms should
generalize functions as did diffeomorphism isotopic to
the identity generalize vector fields.

Symplectic diffeomorphisms isotopic to the identity
are not a good guess, since for T 2 with the standard
symplectic form a small translation would give no fixed

In Yosemite, California, 1989

points at all. We could, however, look at all symplectic

diffeomorphisms obtained as time-1-maps for the family

of vector fields Xft for a smooth time-dependent

family f : [0, 1]×M → R, with ft(x) := f(t, x). This

produces the group of all Hamiltonian diffeomorphisms

Ham(M,ω). Indeed the collection of smooth maps can

be viewed as the Lie algebra for Ham(M,ω).

How can we go from the infinitesimal to the local

as we did in the previous discussion? A basic and not

too difficult symplectic result is that the neighborhood

of a Lagrangian submanifold of a symplectic manifold

is symplectically isomorphic to a neighborhood of the

zero-section in its cotangent bundle with the natural

symplectic structure. Now comes the little trick which

replaces the use of the exponential map associated

to an auxiliary metric. We define N = M ×M with

the form τ = ω ⊕ (−ω). Then the diagonal ∆M is a

Lagrange submanifold of N and an open neighborhood

of it looks like an open neighborhood of ∆M in T ∗∆M .

Every symplectic map, which is sufficiently close to

the identity, has a graph which viewed as a subset of

T ∗∆M is a graph over the zero-section, i.e. the graph

of a one-form λ. An easy computation shows that the

original diffeomorphism is symplectic if and only λ is

closed. It is Hamiltonian if and only if λ is exact:

λ = dg

for some smooth function. Hence the fixed points of

a Hamiltonian diffeomorphism Φ correspond to the

intersection of its graph with the zero-section, and

hence with the critical points of g. Now we are in the

local situation, similarly as in the previous case. We

conclude that a generic element in Ham(M,ω) has at
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least as many fixed points as a smooth function has

critical points if it is close enough to the identity map.

Knowing all this Arnold makes the following daring

conjecture (non-degenerate case, in my words).

Arnold Conjecture: A non-degenerate Hamiltonian

diffeomorphism has at least as many fixed points as a

Morse function has critical points.

It wouldn’t be Dima, if it actually was that straight

forward. The most prominent statement “Arnold-style”

of this conjecture is in his book ‘Mathematical methods

of classical mechanics”. In the Springer 1978 edition

(being a translation of the 1974 Russian edition) it

reads on page 419 (and is a restatement of some

published version of the conjecture in 1965):

Thus we come to the following generalization of

Poincaré’s theorem:

Theorem: Every symplectic diffeomorphism of a

compact symplectic manifold, homologous to the

identity, has at least as many fixed points as a smooth

function on this manifold has critical points (at least if

this diffeomorphism is not too far from the identity).

The symplectic community is now trying since 1965

to remove the bracketed part of the statement. After

tough times from 1965 to 1982 an enormously fruitful

period started with the Conley-Zehnder theorem in

1982/83, proving the Arnold conjecture for the standard

torus in any (even) dimension using Conley’s index

theory (a powerful version of variational methods). This

was followed by Gromov’s pseudoholomorphic curve

theory coming from a quite different direction. At this

point the highly flexible symplectic language becomes

a real asset in the field. Finally Floer combines the

Conley-Zehnder view point with that of Gromov, which

is the starting point of Floer theory in 1987. As far as

the the Arnold conjecture is concerned, we understand

so far a homological version of the non-degenerate

case. A Luisternik-Shnirelman case (also conjectured by

Arnold) is still wide open, though some partial results

are known.

The development of symplectic geometry has been

and still is a wonderful journey. Thanks Dima!
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