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HUYGENS AND BARROW,
NEWTON AND HOOKE

The year 1987 was the 300th anniversary of the publication of
Newton'’s Principia, the book that laid the foundations of the
whole of modern theoretical physics. Properly speaking, theoreti-
cal physics began with this book. At almost the same time mathe-
matical analysis began. The first publication on analysis was in
1684, and it was due not to Newton, since he did not publish his
discoveries in this field, but to Leibniz.

When we speak* of the contents of the Principia we should
consider how the book was written, from what it arose, what
problems were solved, when analysis was created, for what it was
created, why it was so called, and where its basic ideas came from,
for example, why in analysis we speak of functions and so on.

All these questions refer to the time of Newton at the end of
the 17th century, when awhole galaxy of brilliant mathematicians

*  The present book is an extended version of a lecture given on 25 February

1986 at the opening of the students’ lecture series of the Moscow Mathemati-
cal Society. The author is grateful to A. Yu. Vaintrob, who passed on his record
of thislecture, and also to V.L. Ginzburg, A. P. Yushkevich and G. K. Mikhailov
for useful remarks. The lecture is supplemented by material from the articles
“Three hundred years of mathematical science” (Priroda, 1987, No. 8, pp.5-
15) and “Kepler’s second law and the topology of Abelian integrals” (Kvant,
1987, No.12, pp.17-21).
The author acknowledges the hospitality of New York University, where he
read the 1988 series of the James Arthur Lectures on Time and its Mysteries,
partially incorporated in this book, and the help of John H. Lowenstein, who
produced the computer-made pictures for this lecture, partially reproduced
in this book.



was working. The subsequent development of mathematics has
completely overshadowed their achievements, hence the gran-
diose discoveries of those times seem to us from a distance to be
less than they actually were. Among these mathematicians, apart
from the best known, Descartes, Pascal and F ermat, who
preceded Newton and Leibniz, and Johann Bernoulli, who was
working a little later, we must mention Barrow, the direct prede-
cessor and teacher of Newton, and Huygens, who solved the same
problems as Newton and Leibniz, but usually somewhat outstrip-
ping them, even without any analysis.

The mathematical discoveries of Huygens had a strange fate.
Most of them entered analysis not in his lifetime, but much later,
and mainly thanks to the work of other mathematicians (for
example Hamilton, who worked more than 100 years later).
These results have now entered science in the form of symplectic
geometry, the calculus of variations, optimal control, singularity
theory, catastrophe theory,... We are only just learning about
some of them. For example, it has recently become clear (a
lecture of Bennequin (1)* to the Bourbaki seminar) that the first
textbook on analysis, written by I'Hépital from the lectures of
Johann Bernoulli, contains a representation of the manifold of
irregular orbits of the Coxter group Hs (generated by reflexions
in the planes of symmetry of an icosahedron). This repre-
sentation appears there not in connection with the group of
symmetries of the icosahedron, but as a result of investigations of
evolvents™* of plane curves with a point of inflexion, investiga-
tions very close to those of Huygens (and possibly even carried
out by him, although the first publication was apparently due to

*  References of this kind refer to the Notes at the end of the book.

**  (Translator’s note.) In agreement with the author, the term “evolvent” has
been used in this edition instead of the equivalent “involute”, which is also
commonly found in the literature.

I’Hopital). [llustrations appearing in recent works on the connec-
tion between the icosahedron and singularities of evolutes and
evolvents and, it should be said, obtained by modern mathemat-
icians not without difficulty and even with the help of computers,
were already known at that time.

We shall return to evolvents, and I am now speaking about the
history of Newton’s Principia and about the contents of the main
part of this book. Essentially this book was written to solve a
one-off problem. Although it contains, of course, the so-called
three laws of Newton and a great quantity of other material,
nevertheless it was actually written in less than ayear only in order
to present the solution of this one problem, namely the problem
of motion in a force field inversely proportional to the square of
the distance from an attracting centre.

The first part of the story is the history of where this problem
came from, why Newton began to take it up, and what he proved,
properly speaking, in this direction. This is the story of Newton
and Hooke.



CHAPTER 1.
THE LAW OF UNIVERSAL
GRAVITATION

§1. Newton and Hooke

The name of Newton and his enormous contribution to both
mathematics and physics are well known. He was born in 1642, in
the year of Galileo’s death, and died in 1727. The work of Newton
in the field of the theory of gravitation became famous in conti-
nental Europe thanks to Voltaire, who paid a visit to England in
the last years of Newton’s life and propagated the law of universal
gravitation, which made a great impression on him. Voltaire
informed the world about the famous apple, which Newton’s
niece Catherine Barton had told him about (2).

Robert Hooke was an older contemporary of Newton, though
much less well known. He was born in 1635 and died in 1703.
Hooke was a poor man and began work as an assistant to Boyle
(who is now well known thanks to the Boyle — Mariotte law
discovered by Hooke (3)). Subsequently Hooke began working in
the recently established Royal Society (that is, the English
Academy of Sciences) as Curator. The duties of Curator of the
Royal Society were very onerous. According to his contract, at
every session of the Society (and they occurred every week except
for the summer vacation) he had to demonstrate three or four
experiments proving the new laws of nature.

Hooke held the post of Curator for forty years, and all that
time he carried out his duties thoroughly. Of course, there was no
condition in the contract that all the laws to be demonstrated had
to be devised by him. He was allowed to read books, correspond
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with other scientists, and to be interested in their discoveries. He
was only required to verify whether their statements were true
and to convince the members of the Royal Society that some law
was reliably established. For this it was necessary to prove this law
experimentally and demonstrate the appropriate experiment.
This was Hooke’s official activity.

In the line of duty Hooke was interested in all discoveries in
natural science by others, but it also fell to him to make discover-
ies. Towards the end of his life he counted 500 laws that he had
discovered. It needs to be said that the numerous discoveries of
Hooke form the basis of modern science. Very many of them were
discovered more or less in parallel with other scientists, hence
very often now laws discovered by Hooke are known, but at-
tributed to other people. As aresult the law of elasticity (the force
is proportional to the extension) bears the name of Hooke, but
his other discoveries bear other people’s names. For example,
Hooke discovered the cellular structure of plants. He improved
the microscope and was the first to observe that plants consist
of cells. He scrutinized various objects in the microscope
and everything he saw he sketched. It is clear that as he saw new
things in the microscope he quickly made new discoveries. Hooke
personally engraved pictures which he saw in the microscope,
and even published on the basis of this a book “Micrography”,
which later led Leeuwenhoek to his famous biological discover-
ies,

At that time it was easy to carry out fundamental discoveries,
and large numbers of them were carried out. Huygens, for ex-
ample, improved the telescope, looked at Saturn and discovered
its ring, and Hooke discovered the red spot on Jupiter. At that
time discoveries were not unusual events, they were not regis-
tered, not patented, as they are now, they were quite an everyday
occurrence. (This was the case not only in the natural sciences.
Mathematical discoveries at that time also poured forth as if from
a horn of plenty (4).)
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But Hooke never had enough time to dwell on any of his
discoveries and develop it in detail, since in the following week he
needed to demonstrate new laws. So in the whole manifold of
Hooke’s achievements his discoveries appeared somewhat in-
complete, and sometimes when he was in a hurry he made
assertions that he could not justify accurately and with mathe-
matical rigour.

One of the discoveries to which Hooke pretended was that of
the wave nature of light. (That light consists of waves was asserted
by Huygens at about the same time as Hooke.) Hooke based his
conclusions on the study of colours of thin films (soap bubbles,
for example). He assumed that the interference of light in soap
films proves its wave structure. This produced the first conflict
between Hooke and Newton.

Newton also took up the problem of light. He broke down
white light into the components of the rainbow, determined the
colours of the Sun’s spectrum and thereby laid the foundations
of modern spectroscopy, a science that is rather wave-theoretical.
Nevertheless, Newton held to another theory and assumed that
light consists of moving particles. Sound consists of waves, so
sound can bend round obstacles (it can be heard even if the
source is hidden by a hill, so essentially a hill is not an obstacle for
sound), but light cannot bend round obstacles, we cannot see
behind a hill, so light cannot consist of waves.

Despite the assertion that light consists of particles, Newton
was the first to measure the wavelength of light. He did this in the
following way. If we put a lens on glass and shine a light from
above (Fig.1), then the lengths of the paths of light rays that meet
in one point will be different and, depending on whether the
difference of the lengths is or is not an integer number of
wavelengths, the rays will reinforce each other or cancel. There-
fore, looking at the glass from above, we can see rings consisting
of points of equal illumination (these are called Newton’s rings,
although Hooke discovered them). It is important that the thick-
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ness of the wedge of air between the lens and the glass is propor-
tional to the square of the distance from the point of contact.
Thanks to this the radii of the rings turn out to be proportional
to the square root of the product of the wavelength and the radius
of curvature of the lens. Because of this the radii of the rings are
not as small as the wavelength, and
the rings can be observed. By meas-
uring these rings we can find the
wavelength of light, which Newton
did. But how did he calculate the

wavelength if he did not believe in
the wave nature of light? We are \ Z /
concerned with the specific charac- Dé

ter of Newton’s theory of light. He Fig. 1.

assumed that particles of light fly in Formation of Newton’s rings
space not uniformly, but at the time

of motion they experience periodic attacks (fits - something like
modern ideas about internal degrees of freedom of particles).
Thus he measured the distance between the positions of particles
under two neighbouring attacks.

Thus, disagreements arose between Newton and Hooke. They
could possibly have been avoided if there had not been aggravat
ing circumstances. Newton lived in Cambridge and Hooke in
London, and they were in correspondence mainly through Ol-
denburg, the secretary of the Royal Society. To all appearances,
Oldenburg’s character was not very good, and he took great
pleasure in stirring up trouble between people. As a result, and
because of their difference of opinion on the nature of light,
relations between Newton and Hooke deteriorated completely.
But after some time Oldenburg died (we shall return to him
when we talk about analysis), and Hooke wrote a conciliatory
letter to Newton. This letter written by Hooke on 24 November
1679 was essentially the start of the history of the law of universal
gravitation (5).
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The purport of Hooke’s conciliatory letter to Newton was the
suggestion of joint work. Hooke recognized the famous achieve-
ments of Newton and suggested that they discuss and verify
experimentally all possible ideas and theories. Hooke suggested
to Newton, in particular, that Newton express his thoughts about
several of Hooke’s conjectures and promised not to be offended
by criticism and, giving up their old dissensions, work together on
the study of nature. In this letter Hooke informed Newton of the
latest physical and mathematical news. One item of news was the
latest theory of planetary motions, which had arrived from the
continent of Europe. According to this theory it was assumed that
whirlwinds are constantly raging in outer space, which carry the
planets along, support them, and because of this compel them to
rotate about the Sun. Another theory was Hooke’s conjecture
about attraction. In this letter he did not refer to it in detail, but
only asked Newton what he thought about this conjecture. One
more conjecture of Hooke was the law of oscillation of elastic
bodies. In this letter Hooke discussed the new measurements of
the length of a meridian (and consequently the radius of the
Earth) by the French explorer Picard.

Newton answered very quickly — in four days. This remarkable
letter writen by Newton on 28 November 1679 begins with an ad-
mission that he was finishing with philosophy and had recently
been concerned with other matters. Apparently age was telling
(Newton was already 37, and this was the age when it becomes
difficult to be interested in mathematics and in other branches of
philosophy). “I did not... so much as hear...”, writes Newton, “of
your hypotheses of compounding the celestial motions of the
planets... though these no doubtare well known to the philosophi-
cal world... My affection to philosophy being worn out, so that I
am almost as little concerned about it as one tradesman uses to be
aboutanother man’s trade or a countryman about learning...”.

The word “philosophy” at that time meant all the exact
sciences. Physics was then called natural philosophy. The other
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matters about which Newton wrote consisted, to all appearances,
in his passion for alchemy. (Apparently he did not count this as
philosophy, although the aim of this science consisted in finding
the philosopher’s stone.) Newton had a large chemical (or, if you
like, alchemical) laboratory, and having worked intensively be-
tween the ages of 20 and 30 years in mathematics and physics and
having done a great deal there, he was mainly concerned in
obtaining gold. He collected a large number of alchemical rec-
ipes, preserved from the Middle Ages, and intended to manufac-
ture gold in accordance with the instructions contained in them.
The efforts he expended on this were significantly greater than
those thatwent into the creation of his mathematical and physical
works, but he did not derive any useful result. It is true that
Newton was not convinced of this at times. It is said that in his
note-books (and he wrote out his experiments in detail, describ-
ing what he mixed with what, and what results he obtained, so
that if he obtained gold by chance, he could reproduce this
process) there is an entry in which, after a detailed description of
the actions he had carried out, he discussed the result: “Terrible
stink. It seems, I am close to the target”.

§2. The problem of falling bodies

Letus return to Newton’s letter. He writes further that, although
he had decided at such a venerable age not to compete with
young minds, he could present a problem that seemed to him
worthy of such a fine experimenter as Hooke. This was the
problem of verifying the theory of Copernicus. As Copernicus
asserted, the Earth moves around the Sun, and also rotates about
its own axis. Newton suggested verifying the second assertion
experimentally. In fact, according to Galileo’s invariance prin-
ciple, it is impossible to discover uniformly rectilinear motion in
itself, but in principle a rotation could still be observed. There-
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fore, said Newton, in order to convince those who do not believe
in the theory of Copernicus (recognized by the Catholic Church,
for example, only in 1837) it was necessary to test it experimen-
tally. Apparently Newton was the first to pose the problem of an
experimental proof of the rotation of the Earth. Moreover, in
posing this problem to Hooke, Newton suggested a method that
would, in principle, make it possible to do this.

Newton’s suggestion was as follows. If the Earth rotates, then
objects falling freely from a great height will be deflected from
the vertical. Therefore itis sufficient to measure the deflection of
the fall of heavy balls from the vertical direction (established by
means of a plumb-line), in order to discover the rotation of the
Earth.

In fact, Newton says in this letter, imagine that we are looking
at the Earth from the North Pole and are seeing the equator and
a mountain, or better a tower, from
which freely falling balls have been /
dropped, initially at rest with respect to
the tower (Fig.2). Suppose that Coper-
nicus is right, and the Earth rotates
from west to east. An ignoramus would E 7 w
think, writes Newton, that then, while ) Fig 2.
the ball is falling, the Earth under jt A THectoryin a non-rott
would turn to the east and the ball e P
would fall to the west of the place over
which it was originally.

But this opinion, which is often advanced as an objection to
the theory of Copernicus, is quite wrong. The mistake is that at
the instant when it is dropped the ball has a non-zero initial speed
with respect to the “fixed” system of reference, directed to the
east. Moreover, the ball is above the Earth, so its speed is greater
than the speed of points on the surface of the Earth. But the
speed of the ball in the horizontal direction does not change
during its fall, so it travels a greater distance in the easterly
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direction than the point of the surface over which it was. Thus,
the ball should fall not to the west, but to the east of this point.
If the balls are dropped not on the equator, but at our latitude,
then the effect will be somewhat smaller, but nevertheless, says
Newton, it should be possible to discover it. Of course, this cffect
is very small, so Newton advises doing the following. Under the
point from which itis dropped and strictly from the plumb-line it
is necessary to put a “steel” in the direction from north to sonth
and to drop possibly heavier balls, having suspended them on a
thread and burning it through in order to avoid unwanted initial
jolts. Then, if we drop a ball sufficiently many times and calentate
how many times the ball, on striking the steel, flies off to the cast,
and how many times to the west, we can, by comparing these two

numbers, determine whether one can observe a subtle effect of

deflecting to the east or not.

In his remarkable letter to Hooke, Newton touched on one
more question. He discussed how a ball would move after reach-
ing the surface if there were a shaft in the .

Earth (that is, the ball moves through the I
Earth without meeting any resistance).

Newton assumed that the ball would then

describe a spiral, and for clarity drew this

spiral in the letter (Fig.3).

Hooke read Newton’s letter to the ses-
sion of the Royal Society on 4 December
1679. This caused a lively discussion, in

. N Fig. 3.
which many scientists took part. Everyone trajectory inside the
debated animatedly whether it was actu- Earth according to
ally possible to observe the phenomenon Newton

described by Newton and on what side the

balls must be deflected. For example, The Royal Astronomer

Flamsteed came forward, as laid down in the protocol of the
Society, with the statement that this effect had been known in the
artillery for a long time. Namely, in Flamsteed’s opinion, a shot
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falls back into the muzzle at an angle of elevation of 87° (ap-
parently for this reason even now the stops of anti-aircraft guns
do notallow the barrel to be raised to an angle greater than 87°).
This, in Flamsteed’s opinion, testifies to the rotation of the Earth,
because otherwise the dangerous angle would be 90°. In other
words, Flamsteed suggested a slight modification of Newton’s
suggestion. Instead of dropping the balls downwards, Flamsteed
suggested shooting cannon balls vertically upwards and seeing
whether they would fall back.

Hooke came forward at the next session on 11 December,
making some critical remarks about Newton’s arguments, to
which Newton, who could not bear the slightest criticism,
replied on 13 December with a long letter containing a lengthy
discussion of the question and clearly showing that at the time
Newton did not know what the trajectory of the ball should
look like*.

Firstly, Newton’s theory is very incomplete. It is necessary to
take into account the fact that the direction of the vertical — the
direction to the centre of the Earth — changes during the motion
of the ball, so the force of gravity at different points of the
trajectory is directed differently. This leads to the fact that a ball
moving to the east will experience an influence that deflects it
back to the west. So although the ball nevertheless falls to the east
of a point of the plumb-line, the resulting deflection will be less
than Newton predicted.

If, being provided with our modern knowledge, we carry out
all the calculations accurately, we see that the true effectis 2/3 of
the deflection that should be obtained according to Newton (6).
Thus, the shift to the east on account of the difference in the

*  This letter contains among other mistakes an impossible picture of an orbit

in a field whose potential is proportional to the distance from the centre: the
angle between the pericentre and the apocentre is 120° (it should belong to
the interval between /2 and n/Y3) and the orbit is clearly asymmetric.
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distances to the centre of the Earth and the shift to the west
caused by the difference in the direction of the force of gravity
are quantities of the same order, so Newton’s qualitative argu-
ment is altogether false. If these two effects —deflection to the east
and deflection to the west — had a slightly different relation, the
qualitative picture would be different.

Secondly, Hooke rightly observed that in the northern hemi-
sphere a ball is deflected not only to the east, but also to the
south. Moreover, he asserted (for incomprehensible reasons)
that at our latitudes the deflection to the south is even greater
than that to the east.

Finally, Hooke made a remark referring to the trajectory of
motion of a ball inside the Earth. He says that the spiral drawn by
Newton causes him some doubt. In his opinion, inside the Earth
approximately the same will happen as under an oscillation of a
pendulum on a string, and if a ball moves freely inside the Earth
without experiencing resistance, then its trajectory will be closed

Fig.4. Fig.5.
Trajectories inside the Earth Taking account of air resistance
according to Hooke according to Hooke

and remind us of an ellipse (Fig.4), and a spiral can be obtained
only by taking account of air resistance. But in this case the spiral
obtained is not the same as Newton’s, not making one circuit, but
slowly winding, with a large number of rotations (Fig.5).
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In fact, if we solve this problem by means of our modern
methods, we see that inside the Earth there acts not the law of uni-
versalgravitation but Hooke’slaw—the force of attraction is directly
proportional to the distance from the centre of the Farth. There-
fore inside the Earth the trajectory of a ball is the same as under
elasticoscillations (oraswitha pendulum), thatis, itiselliptic.

In criticizing Newton, Hooke was not confined to theoretical
arguments, and decided to carry out an experimental verifica-
tion. He reported on his results to the Royal Society of 18 Decem-
ber. He organized the experiments somewhat differently and
dropped the balls not on a “steel” situated below a layer of water,
as Newton suggested, but in “a box filled by the tobacco pipe
clay”, which should weaken the shock force. On the box there was
drawn a network of thin lines with centre under the point of
suspension so as to determine from the trace of the ball not only
the deflection to the west or east, but also in the north-south
direction. The balls were dropped first in the open air and later
in a cathedral from a height of about 9 metres with the doors and
windows carefully closed, in order to protect the ball from the
harmful effects of draughts. If everything is properly calculated,
taking account of turbulence, then it is clear that with such a
small height no effect could be observed (the theoretical deflec-
tion is 0.3 mm).

ButHooke was a very skilful experimenter. Till then this experi-
ment had not been achieved, but Hooke “achieved” it. Hooke in-
formed the Royal Society that in each of three trials a ball was
deflected to the south-east by at least a quarter of an inch. Ap-
parently he did not have any command of statistical analysis, and
the number of trials was notlarge enough. In addition, most prob-
ably he did notverify theresulting deflection at the corresponding
significance level and regarded the phenomenon as established,
even though nothing had been clearly proved. At the beginning of
1680 Hooke repeated his experiments, again “successfully”. He
informed Newton of his resultsin a letter sent on 6 January.
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§3. The inverse square law

Apart from the account of his experiments, this letter of Hooke
contained the following important words: “My supposition is that
the attraction always is in duplicate proportion to the distance
from the centre reciprocal, and consequently that the velocity will
be in a subduplicate proportion to the attraction, and con-
sequently as Kepler supposes reciprocal to the distance... Mr.
Halley, when he returned from St.Helena, told me that his pen-
dulum at the top of the hill went slower than at the bottom, which
he was much surprised at, and could not imagine a reason. But I
presently told him that he had solved me a query I had long
desired to be answered... and that was to know whether the
gravity did actually decrease at a greater height from the centre...
what I mentioned concerning the descent within the body of the
Earth... not that I really believe there is such [inverse propor-
tional to the squared distance] an attraction to the very centre of
the Earth, but on the contrary I rather conceive that the more the
body approaches the centre, the less will it be urged by the
attraction, possibly somewhat like the gravitation on a pendulum
or abody moved in a concave sphere where the power continually
decreases the nearer the body inclines to a horizontal motion...
But in the celestial motions the Sun, Earth or central body are the
cause of the attraction, and though they cannot be supposed
mathematical points yet they may be conceived as physical, and
the attraction at a considerable distance may be computed ac-
cordingly to the former proportion [inverse square] as from the
very centre...”.

This inverse square law is apparently the Hooke theory of

attraction that he mentioned in the first letter and, in Hooke'’s
opinion, it was necessary to take it into account when studying the
fall of a body both outside the Earth and inside. It is true, wrote
Hooke, that inside the law is different, of course, since the layers
traversed by the body will attract it in different directions. There-
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fore the law of motion inside is apparently similar to that ob-
served in elastic oscillations. Hooke also wrote that when he was
studying these laws of force he tried to determine the forms of
the orbits in which bodies must move. He obtained the result that
inside the Earth the orbits will be roughly the same as for oscilla-
tions of a pendulum, but outside, when there is only one
attracting centre, the body will move along a curve which he
called an excentrical elliptoid.

Most likely the situation was as follows. Hooke, not having the
necessary mathematical technique, was unable to solve exactly the
equations of motion obtained from the inverse square law and, in
order to find the orbits, he integrated these equations numeri-
cally, graphically or on an analogue machine like the concave
surface he mentioned. It is known that Hooke had such a ma-
chine: he investigated the nature of motion under various laws of
attraction, modelling the attraction by the action of a surface on a
weight sliding over it. (We observe that all this happened six years
before Newton wrote his book and stated the general laws of me-
chanics. Accordings to our modern ideas, at that time there wasno
mechanics. Nevertheless, in these pre-mechanics times Hooke
found approximate solutions of the equations of motion under
the inverse square law, and Huygens stated the law of conservation
of energy. Itis true that Huygens did not give it in its most general
form, butin his formulation (7) the law was applicable in our case,
and made it possible to realize that in the absence of air resistance
the orbits of a stone inside the Earth must be closed.) Having
integrated the equations of motion, Hooke drew the orbits and
saw that they were similar to ellipses. This is how the word ellip-
toid arose. His scientific honesty did not allow him to call them
ellipses, since he could not prove that they were elliptic. Hooke
suggested to Newton that he do this, saying that he did not doubt
that Newton with his superior methods could cope with this prob-
lem and also check that Kepler’s first law (which asserts that the
planets move in ellipses) also follows from the inverse square law.
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In sending Newton a letter with this suggestion, Hooke was
turning to later discoveries, since he had no time for the mathe-
matical details. Newton was silent and never wrote any more to
Hooke (except for one case, when he sent Hooke arequest from
an Italian doctor who wished to collaborate with the Royal Society
and took the opportunity to thank him for his information about
his experiments with falling balls), he never referred to the
correspondence (although he kept the letters) and he did not
speak about the fact that Hooke had posed him the problem of
gravitation.

But Newton took up this problem, investigated the law of
motion, checked that elliptic orbits had actually been obtained,
and proved conversely that the inverse square law follows from
Kepler’s law on ellipticity of orbits*. In order to put this properly
into shape and present it in accessible form, he needed to state
the basic principles, referring to such general concepts as mass,
force, acceleration. This is how the famous “three laws of New-
ton” appeared, to which Newton himself did not pretend (the
first law, Galileo’s law of inertia, had been well known for a long
time, and the other two could not have been discovered later
than, say, Hooke’s law of elasticity or Huygens’ formula for
centrifugal force). But in connection with the law of universal
gravitation Newton behaved less scrupulously.

§4. The Principia
On the initiative of the astronomer Halley (1656-1742) Newton
wrote a paper with a detailed presentation of his results under the

title “Philosophiae Naturalis Principia Mathematica” and sent it
to the Royal Society on 28 April 1686. In the manuscript Hooke

*  The proofs are given below, on pp. 95-96.
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was not mentioned once. Halley, who was a friend of them both,
was not at all pleased at this, and he persuaded Newton to insert
a reference to Hooke. Newton yielded to persuasion, but did it in
a very original form. He wrote that the inverse square law corre-
sponds to Kepler’s third law “as Wren, Hooke and Halley inde-
pendently asserted”. Wren and Halley were not, of course, ran-
dom people. Wren was an architect, one of the founders of the
Royal Society, who together with Hooke was occupied with the
rebuilding of London after the Great Fire of 1666, and took an
active partin the discussion on questions of the motion of bodies.
Halley, who subsequently predicted the return of the comet
bearing his name, put much effort into forcing Newton to write
this book, and his experiments with clocks on the island of
St.Helena served as experimental confirmation of the law of
gravity. So, putting Hooke between them, Newton not only
belittled his role, but also deprived him of the support of friends
in the argument about priority which was soon to start.

Here it is appropriate to say a few words about the material
position of our heroes. Hooke was poor and lived on the salary
that the Royal Society paid him. He did some additional work,
using his extensive knowledge of mechanics in carrying out the
huge restoration work after the Fire of London. These archi-
tectural earnings helped him in the end to create a certain
prosperity. Holding the chair at Cambridge, Newton earned
considerably more (200 pounds a year), and the farm that he
had inherited, which he leased out and where the famous
apple tree grew, gave him roughly the same income. Despite
the fact that Newton was quite well off, he did not want to
spend any money on the publication of the book, so he sent
the Principia to the Royal Society, which decided to publish the
book at its own expense. But the Society had no money, so the
manuscript lay there until Halley (who was the son of a rich
soap manufacturer) published it on his own account. Halley
took on himself all the trouble of publishing the book, and

25



even read the proofs himself. Newton, in correspondence at
this time, called it “Your book”...

In this correspondence with Halley, Newton, answering the
request to refer to Hooke, wrote a remarkable phrase, which
revealed his opinion on the difference between mathematicians
and physicists. Newton regarded himself as a mathematician and
Hooke as a physicist. Here is how he describes the difference in
the approaches of a mathematician and a physicist to natural
science.

“Mathematicians, that find out, settle and do all the busi-
ness, must content themselves with being nothing but dry
calculators and drudges, and another that does nothing but
pretend and grasp at all the things must carry away all the
inventions as well of those that were to follow him as of those
that went before... And... I must now acknowledge in print I
had all from him and so did nothing myself but drudge in
calculating, demonstrating and writing upon the inventions of
the great man”.

It must be said that Newton made all the discoveries contained
in the Principia without using analysis, although he had command
of it at this time. He proved everything that was required by
means of direct elementary geometrical arguments more or less
equivalent to analysis (and not by translating analytical calcula-
tions into geometrical language).

§5. Attraction of spheres

Let us examine, as an example of Newton’s arguments, how he
proved that external layers do not act on a stone inside the Farth,
that is, that the field of gravitation inside a homogeneous sphere is 2er0.
Earlier this fact was studied at (Russian) high school, but it has
now fallen out of the programme; hence possibly this remarkable
proof is not universally known.
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Let us consider a point P inside a ball bounded by an
infinitely thin spherical layer (Fig.6), take a small solid angle
with vertex at P, and prove that the forces, with which two
infinitesimal volumes cut out by this angle from the spherical
layer act on a body placed at P, balance. (Nowadays, when
teaching analysis, it is not very
popular to talk about in-
finitesimal quantities. Con-
sequently present-day stu-
dents are not fully in com-
mand of this language.
Nevertheless, it is still neces- m
sary to have command of it.) !
These two volumes are in-

Al

finitesimal prisms (their gen- Fig.6.
P . g Attraction of a spherical layer accord-
erators, of course, slightly ing to Newton

diverge, but the amount of
this opening can be neg-
lected, since the error is an infinitesimal of higher order),
whose volumes can be calculated from the formula V = [,
where [is the length of the slant edge, and Sis the area of the
cross-section. But the edges of our prisms are equal as segments
cut out on a line by a pair of concentric circles, and the
cross-sections are related like the squares of the distances from
P. Thus, these two volumes attract the body at P on opposite
sides with identical forces. In exactly the same way, all the other
influences balance, so the resultant of all the forces is zero.
This sample of Newton’s argument shows how it is possible
to solve problems from potential theory without analysis,
without knowing the theory of harmonic functions, or the
fundamental solution of the Laplace equation, or the simple
and double layer potentials. Similar arguments, preceding the
rise of analysis, often occur in papers of those times and turn
out to be very powerful. Here is an example of a problem that
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people like Barrow, Newton and Huygens would have solved in
a feV\.r minutes (8) and which present-day mathematicians are
not, m my opinion, capable of solving quickly*: to calculate

i sin tan x — tan sin x

im -
x>0 aArcsin arctanx— arctan arcsinx

Newton also proved that a homogeneous ball (or a spherical
layer) attracts points of the outer domain as if all its mass were
concentrated at the centre. Newton’s proofis elementary, but not
easy (justasitis not easy to calculate the corresponding integral).
The modern proof given below (due to Laplace) is unfortunately
beyond the bounds of the science taught in Russian high school
(which is not surprising), or even in the Faculty of Mathematics
and Mechanics at Moscow State University.

Let us consider the velocity field of an incompressible fluid
filling the whole of space and spreading spherically-symmetrically
over the radii from a source at the origin. The speed of such a
flow is inversely proportional to the square of the distance from
the source.

. Indeed, because of the incompressibility, through each sphere
with centre at the source there passes in unit time the same flow
of the fluid (as much as the source produces). Because of the
spherical symmetry of the current, this flow is equal to the
Product of the area of the sphere and the speed of flow through
it. But the area of a sphere is directly proportional to the square
of the radius. Hence, in order that the flow should not depend
on the radius, the speed must be inversely proportional to the
square of the distance from the source.

Thus, the law of decrease of the rate of a spherically symmetric
ﬂow of an incompressible fluid with the distance from the centre
is the same as the law of decrease of the force of gravity. (Hence

*  The only exception I know - G. Faltings — proves the rule.
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it is obvious what is the natural analogue of the gravity field in
n-dimensional space: the force must decrease in inverse propor-
tion to the (n - 1st power of the distance.)

We have proved that the field of the force of attraction of a mate-
rial point has the following remarkable property of incompressi-
bility: if we regard it as the velocity field of a current, then the value
of the flow through the boundary of any bounded domain not
containing the attracting pointis zero: asitflowsin, soitflows out.

Itturns out thatunderany mass distribution thefield of the force
ofattraction by these masses outside these masseshas the same prop-
ertyofincompressibility. Forunderaddition of thevelocityfields the
magnitudes of their flows throughany surfaceareadded. Therefore
under addition of the velocity fields of two flows of an incom-
pressible fluid we again obtain the velocity field ofanincompressible
fluid: the flow of the totalfield through the boundary of the domain
is zeroif the flows of the fields to be added are zero. Thus, the total
force ofattraction by several masses has the property ofincompressi-
bility (ina domain outside the attracting masses).

In particular, letusconsider the field of the force of attraction by
ahomogeneous ball (orasphericallayer). In the outer domain this
field coincides with the velocity field of an incompressible fluid (as
we have just proved). It is spherically symmetric. But the only
spherically symmetric velocity field of an incompressible fluid is
inversely proportional to the square of the distance from the
centre. Hence the ball (or layer) attracts external points just as a
mass placed at the centre. That the mass at the centre must coin-
cide with the total mass of the ball (or layer) is obvious by compar-
ing the flows through the sphere that envelops the ball in question.

The theorem that a layer does not attract interior points also
follows from this argument.* [Both theorems of Newton (on the

*  PROBLEM. Calculate the mean value of the function 1/r over the sphere
(x-@)2+ (y- B2+ (z- 92 = R and of the function log 1/r over the circle
(x-@)2+ (y-H2=R%
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attraction by spherical layers of interior and exterior points) can
be extended to the attraction by layers between homothetic
ellipsoids (the role of the centre is played here by any confocal
ellipsoid smaller than the one in question). The ellipsoids can
even be replaced by algebraic surfaces of any degree (9). The only
important thing is that the surface should be hyperbolic (it
should intersect every line emanating from some point as many
times as the degree of the equation of the surface).]

§6. Did Newton prove that orbits are elliptic?

To conclude the account of the law of universal gravitation we
must say a few words about the discussion that has developed
around it very recently in the physics journals. In the past this
discussion would have been impossible, but now the situation has
changed thanks to the fact that the spirit of modern mathematics
has penetrated to a number of physicists, causing them, as we
shall now see, some damage. They have begun to worry about
questions that earlier nobody would have talked about seriously.
Many physicists have taken part in this discussion (an account of
it can be found in an article by R. Weinstock (10), and the theme
of the argument has been stated in the following way: did Newton
prove that Kepler’s first law follows from the law of universal
gravitation?

In reality, this is the question. For the trajectory of a body
moving under the action of the force of gravity Newton’s laws give
the differential equation

_k

?
y3

Instead of solving it according to all the rules of science,
Newton in his book presented many solutions of this equation
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and verified that for any initial condition there is a solution
among them that satisfies it. In other words, for any point and
vector in space in the set of orbits found by Newton there is one
that initially passes through this point and has a given velocity
vector there. If the initial speed of the body is not too large, then
the orbit is elliptic. But who said, ask the physicists experienced
in the mathematical niceties, that there does not exist any other
trajectory satisfying the same initial conditions along which the
body can move, observing the law of universal gravitation, but in
a completely different way? Mathematicians know that the ab-
sence of another trajectory of this kind is called the uniqueness
theorem. Thus, in order to deduce from the law of universal
gravitation that a body moves in this and no other way, Newton
needed not only to produce many solutions of the differential
equation but also to prove the uniqueness theorem for it. Did he
do this? No. Well then, generally speaking, it is impossible to use
this law to describe reality until the uniqueness theorem has been
proved. Who was the first to do this? Johann Bernoulli. So it was
he, not Newton, who derived Kepler’s law from the law of univer-
sal gravitation, and all the glory must belong to him. Here is what
the physicists who took part in the discussion say, repeating what
was said many years ago by mathematicians (for example, in the
book of A. Wintner in 1941).

In fact, all this argument is based on a profound delusion.
Modern mathematicians actually distinguish existence theorems
and uniqueness theorems for differential equations and even
give examples of equations for which the existence theorem is
satisfied but the uniqueness theorem is not (11). So various
troubles can arise, and if Newton’s equation were troublesome, it
would actually be impossible to make any deductions. A mistaken
point of view arises because of the unwarranted extension of the
class of functions under consideration. The factis that in modern
mathematics the concepts of function, vector field, differential
equation have acquired a different meaning in comparison with
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classical mathematics. Speaking of a function, we can have in
mind a rather nasty object — something differentiable once or
even not at all — and we must think about the function class
containing it, and so on. But at the time of Newton the word
function meant only very good things. Sometimes they were
polynomials, sometimes rational functions, but in any case they
were all analytic in their domain of definition and could be
expanded in Taylor series. In this case the uniqueness theorem is
no problem, and at that time nobody gave it a thought.

But in reality Newton proved everything, to a higher standard.
The following theorem is true.

Suppose we have a differential equation

x =v(l %)

and that for any initial condition @ we have produced a solution
x (t, @) with x (0, a) = 4, where this solution depends smoothly
(that is, infinitely differentiably) on a. Then the uniqueness
theorem is true for this equation.

This theorem can be proved very easily. From the existence
of a solution that depends smoothly on the initial data it follows
that there is a (local) diffeomorphism that rectifies the original
field of directions, taking it to the standard form of a field of
horizontal directions (our solution gives this diffeomorphism:
(t, @) « (¢, x(t,a))). The uniqueness theorem is obviously
satisfied for the rectified field, since the equation takes the form
a=0.

Thus, in general, uniqueness does not follow from the exist-
ence of a solution, but everything will be in order if the solution
produced depends smoothly on the initial condition.

Let us see what Newton did. For each initial condition he
produced a solution, described it, and from this description it
became obvious straight away that the solution depends smoothly
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on the initial condition. Thus, there is no doubt about the
uniqueness and Newton correctly proved Kepler’s first law.

Of course, one could raise the objection that Newton did not
know this theorem. In fact, he did not state it in the form that we
have just used. But he certainly knew it in essence, as well as many
other applications of the theory of perturbations — the mathe-
matical analysis of Newton is to a considerable extent a well
developed theory of perturbations.

33



CHAPTER 2.
MATHEMATICAL ANALYSIS

§7. Analysis by means of power series

Newton remarked that the laws of nature are expressed by the
differential equations that he devised. Individual, and at times
very important, differential equations had been considered and
solved even earlier, but Newton turned them into an inde-
pendent and very powerful mathematical instrument.

Newton discovered a way of solving any equations, not only
differential but, for example, algebraic. He regarded this dis-
covery as his most important achievement and codified it in a
letter to Leibniz on 24 October 1676 (it was sent via Oldenburg
and has therefore gone down into history as the “Second letter to
Oldenburg” (epistola posterior) ), in which he described analysis.

Analysis is a concept that is quite difficult to define. Newton
understood by analysis the investigation of equations by means of
infinite series. In other words, Newton’s basic discovery was that
everything had to be expanded in infinite series.* Therefore,
when he had to solve an equation, whether a differential equa-
tion or, say, a relation defining some unknown function (this is
now known as one form of the implicit function theorem), New-
ton proceeded as follows. All functions are expanded in power
series, the series are substituted into one another, the coefficients
of identical powers are compared, and one by one the coeffi-

*  “These studies [on power series] stand in the same relation to algebra as the
studies of decimal fractions to ordinary arithmetic” (12).
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cients of the unknown function are found. The theorem about
the existence and uniqueness of solutions of differential equa-
tions is proved in this way instantaneously together with the
theorem about dependence on the initial conditions so long as
we are not worried about the convergence of the resulting series.
As for the convergence, these series converge so rapidly that
Newton, although he did not strictly prove convergence, had no
doubts about it. He had the definition of convergence and expli-
citly calculated series for specific examples with an enormous
number of digits (in the letter to Leibniz Newton wrote that he
was ashamed to admit to how many digits he took these calcula-
tions). He remarked that his series converge like a geometric
progression and so there were no doubts about the convergence
of his series. Following his teacher Barrow, Newton realized that
analysis has a justification, but quite reasonably he did not think
it useful to linger on it (“One could extend it by an apagogical*
argument”, wrote Barrow, “but to what purpose?”).

§8. The Newton polygon

Apart from power series in which solutions of differential equa-
tions are expanded, Newton also used fractional powers, which
are used when one needs to find an expansion for an algebraic
function y(x) defined by an equation f(x, y) = 0. Suppose, for
example, that we need to solve the algebraic equation

ax + b+ cxy + dx’ = 0.
Then, says Newton, we need to make the following transforma-
tion (similar transformations are now called Fourier transforma-

tions, but in the given case they are nevertheless Newlon transfor-

*  “By contradiction”, that is, strict.

36

mations). We cease to regard a polynomial as a function of the
variables x and y, and consider it as a function on the integer
lattice in the plane. At a point with coordinates (m, n) this
function takes a value equal to the coefficient of x™y" in the
polynomial. We now mark on the lattice the points correspond-
ing to monomials with non-zero coefficients, and take their con-
vex hull. We obtain the Newton polygon (Fig.7). It turns out that
the monomials corresponding to vertices inside the polygon have
no influence on the form of the series, so we can forget about
them, and we need only consider the sides. For example, the side
AB in Fig.7 coresponds to the two-term equation ax® + &? = 0.
Solving this equation, neglecting everything else, we find yas a
function of x: y = kx¥%. This function gives a good approximation
near the origin to the solution of our equation. If we wish to find
the next approximation, we need to write y = kx*? + z and
substitute it into the original equation. After the substitution we
again obtain an algebraic equation, but now for z, which we need
to deal with in exactly the same way. Iterating this process, we
obtain a series in fractional

powers (it is now called the

n
Puiseux series), which gives I‘B
the solution y(x) of the equa- ~
tion in a neighbourhood of e ‘\\
the origin. This method al- A .
ways works. If we had started \ I S
with another side of the poly- A Fig.7 s
gon, we would have arrived at The Newlti n.polygon

another series, which corre-

sponds to another branch of the algebraic function. The side BD

in Fig.7 corresponds to the asymptotic behaviour at infinity.
Here I have given an account of this small part of Newton’s

work, of which he was very proud and which is contained in the

same letter to Oldenburg in 1676, partly because unfortunately it

is not mentioned to students in the first course, although itis a
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basic working apparatus in local analysis, and it is also very
beautiful. In modern mathematics Newton polygons (and poly-
hedra) occur in the geometry of toric manifolds, which arose
about 1973*, and also in physics and mechanics in the theory of
similarity, dimension, and scaling.

The letter to Oldenburg was intended for Leibniz, as we have
already mentioned. But Leibniz lived in Germany and Newton in
England, and at that time it was not safe to correspond with
foreign scholars. Newton did not send the letter to Leibniz, but
directed it to the secretary of the Royal Society Oldenburg, so that
the letter would go by the official route. Oldenburg passed this
letter to Leibniz. Newton’s precaution was not superfluous. The
too sociable Oldenburg spent some months in the Tower for his
contact with foreigners.

§9. Barrow

We now consider the beginnings of analysis, and I start with an
account of Barrow. Newton'’s teacher Isaac Barrow was born in
1630 and died in 1677 (13). In contrast to the shy and bashful
Newton, who even when elected as representative for Cambridge
in Parliament did not utter aword there (true, itis said that Newton
once got to his feet at a session of Parliament, but with a very brief
speech: he suggested closing the window), Barrowin his youth was
avery wild person. His father — a London linen merchant — made
sure that his son could not enter the commercial world because of
the wildness of his character, and sent him off to study.

Barrow learntvarious subjects, buthe was mostattracted by theo-
logy. The way of thinking that determined his future path was this: in
order tobe agood theologian, itisnecessary to knowchronology...

*  A.G. Khovanskii, The geometry of formulas, Soviet Scientific Reviews — C,
Mathematical Physics Reviews, Vol. 4, Harwood, New York, 1984, pp. 67-90.

38

The idea that chronology is a very important science was ob-
vious to everybody at that time, including Newton. And at present
some mathematicians, probably following Barrow and Newton,
though not in England, but in Moscow, are keenly interested in
problems of chronology (14). Newton was very seriously engaged
in the chronology of ancient Egypt. The following problem arose
in it. So much historical information, discovered up to this time,
had already accumulated that did not agree with the biblical dates
of the creation of the world. According to the Bible, the duration
of Man’s existence, from Noah to the birth of Christ, was 2348
years, but there were many Pharaohs and dynasties, and there was
not room for all of them. Newton wrote special texts in which he
suggested a way out of this difficulty. He found Pharaohs in the
bible whose name began with the letter S (Sheshonk, or Shishak)
and Herodotus mentioned another Pharaoh with a different
name, but also beginning with S (Sesostris, now called Senurset).
Newton suggested that these two Pharaohs should be regarded as
one, accordingly correcting the ancient Egyptian chronology
(shortening it by 2000 years — entirely in the spirit of modern
mathematicians). But apparently more scientific approaches to
this question were maturing at this time. Barrow, for example,
suggested using information about eclipses. He therefore said:
“To be a good theologian it is necessary to know chronology,
which requires a knowledge of astronomy”.

Familiarity with astronomy in turn led Barrow to geometry.
This happened for two reasons. Firstly, it was necessary to point a
telescope at the stars, and secondly it was necessary to make the
telescope work, that is, to grind lenses for it. Newton’s first activity
was connected with astronomy. He made the first reflector — a
metal telescope (15).

Barrow began by discovering his remarkable lens formula 1/f
=1/n+ 1/, which is now taught in Russian high school (without
mentioning Barrow by name). In order to derive this formula one
needs to be able to draw tangents to the lens, to find the points
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of intersection of infinitely close normals, and to analyse the
resulting focal points. Thus Barrow was interested in geometry.

It must be said that his life was very hard, because in England
at that time the survivals of feudalism were very powerful, dynas-
ties were changing, revolutions were occurring, people were
subject to persecution for their religious beliefs (at that time this
was regarded as quite permissible, even in the most civilized coun-
tries). Barrow’s religious ideas did not coincide with those that
prevailed in England at that period. He therefore needed to go
away somewhere, and he set off for the Holy Land to get every-
thing in place. Butduring the voyage pirates attacked the ship, and
although Barrow, the only passenger with a sword in his hands,
took part in the boarding battle and overcame the pirates, he did
not reach the end of the voyage. Barrow safely returned to Eng-
land, where at that time the dynasty and the religioussituation had
changed. He was therefore able to obtain the chair of mathematics
founded by Henry Lucas, who had left money to Trinity College,
Cambridge. Barrow, who was studying geometry at this time,
began to give lectures in mathematics there. Newton was then a
second-year student, and apparently attended these lectures. Bar-
row’s lectures were subsequently published, and Leibniz bought
one of his booksin 1673. True, Leibniz later said that he rarely saw
aman or a book of which he could not make some use, but he put
Barrow’s book on a shelf and did notread it.

What did Barrow’s lectures contain? Bourbaki writes with
some scorn that in his book in a hundred pages of the text there
are about 180 drawings (16). (Concerning Bourbaki’s books it
can be said that in a thousand pages there is not one drawing, and
it is not at all clear which is worse.) Because of the abundance of
these drawings, in Bourbaki’s opinion, nobody has noticed what
this book contains, since all its contents are found in geometrical
abundance. In this book no new terms or ideas are introduced,
and there are neither functions nor derivatives. It was mainly
devoted to a development of a single principle, from which many
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consequences were derived. This principle is that there is duality
between problems about tangents and problems about areas.*

This duality enables us, whenever some problem about tan-
gents has been solved (we know how to draw a tangent to a curve
or to calculate the subtangent, the normal, and so on), to solve
the corresponding problem about areas to which this curve is the
answer. In the dual problem it is a question of the area under
another curve, which can be obtained geometrically from the
first. Thus, this book is actually devoted to the Newton — Leibniz
formula, which Barrow could not have known, since this hap-
pened twenty years before their first publications. Barrow also
derived consequences from this principle. Some of these went
quite far. If we look attentively, we can discover two main con-
sequences of this kind: on the one hand, a formula for change of
variables in a definite integral, on the other hand integration of
ordinary differential equations with separated variables. In the
end, coming to the theorem on change of variable in an integral,
Barrow added that, unfortunately, he had discovered this fact
very late, and if he had known it earlier, much of the previous text
could have been simplified. But because Barrow had many other
things to do, he did not make these changes in the text.

It is actually very difficult to read Barrow’s book (17), and not
without reason Bourbaki says that without analysing these 180
drawings it is impossible to understand anything in it. But Newton
attended Barrow’s lectures and so he comprehended everything
and perfectly understood the contents of the book. In many cases
he even simplified and improved the presentation, about which
Barrow, an extremely conscientious man, informed the reader in
a suitable reference. But this help of Newton did not touch at all
on the main points — the Newton-Leibniz formula and the solu-

*  From the papers of Newton that have been preserved it is obvious that he
already knew about this duality in 1665 or 1666, possibly independently of
Barrow.
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tion of equations with separated variables. This was Barrow’s own
contribution, and Newton never pretended to these discoveries.

Barrow, having noticed such a talented pupil, who in his 27
years had already made some deep discoveries in improvements
to the telescope, in optics, and in geometry, thought that he was
already too old to take up his chair (he was 39) and had decided
to go over to ideological work, so he handed over the chair to
Newton. Later he ran into great difficulty. The factis that Barrow
was in holy orders and only because of this was he able to keep
holding the chair. In those far-off times it was impossible to keep
holding the chair without taking holy vows. Newton did not wish
to take vows (although he was promised the deanship). So New-
ton could not remain in the chair at Cambridge for more than
seven years. But Barrow was an influential man and, on leaving
Cambridge, became a court preacher in London. He was there-
fore able to obtain special permission from the king for Newton
as an exception. So Newton kept his chair at Cambridge and
carried out very fruitful activity there.

§10. Taylor series

Integration had already been encountered with Archimedes, and
differentiation with Pascal and Fermat; the connection between
these operations was known to Barrow. What did Newton do in
analysis? What was his main mathematical discovery? Newton
invented Taylor series, the main instrument of analysis.

Of course, some perplexity may arise here, connected with the
fact that Taylor was a pupil of Newton and his corresponding
paper dates from 1715. We can even say there are no Taylor series
at all in Newton’s work. This is true, but only partly. Here is what
actually happened. Firstly, Newton found the expansions of all
the elementary functions — sine, exponential, logarithm, and so
on — in Taylor series and thus verified that all the functions that
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occur in analysis can be expanded in power series. He wrote out
these series — one of them is called Newton’s binomial formula
(of course, the exponent in this formula does not have to be a
natural number) — and used them constantly. Newton correctly
assumed that all the calculations in analysis need to be carried out
not by repeated differentiations, but by means of expansions in
power series. (For example, he used Taylor’s formula for calculat-
ing derivatives rather than using the derivatives for the expansion
of functions — the last point of view was unfortunately supplanted
in the teaching of analysis by the clumsy apparatus of the infinites-
imals of Leibniz.) Newton derived a formula analogous to Tay-
lor’s series in the calculus of finite differences - Newton’s formula
- and finally he had Taylor’s formula in the general form, only in
those places where factorials should be there were coefficients
not written out explicitly,

Newton could have said what the coefficients should be there*
(he putfactorials in the formula for finite differences), but he did
not think it was necessary to do this. He probably had a psychologi-
calreason for this. The factis that, for Newton, quantities were not
abstract numbers, they had a certain physical existence. But all the
quantities A" in Taylor’s formula have different dimensions, and
for everything to be in order there should be a coefficient with the
appropriate dimension before each of them. But then in a differ-
ent system of units the coefficient would also be different. There
was no unique system of units at that time; the units of measure-
ment changed from country to country and even from county to
county. Therefore people preferred not to state the dimensional
coefficientsin the statementof laws, but to speak merely of propor-
tionality, as, for example, in Hooke’s law: “the extension is propor-
tional to the force”. If Taylor’s formula is also written in such a
dimension{ree form, then the factorials disappear and we find

* In Newton’s papers that have been preserved the series was written out
completely (I am grateful to A.P. Yushkevich for this information).
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that the terms in the increment of a function are directly propor-
tional to the n-th derivative and the n-th power of the increment of
the argument. After this each coefficient of proportionality can be
found, depending on the units thatare being used.

In Newton’s formula in the calculus of finite differences the
factorial coefficients are written out explicitly, since in this case the
unitof measurementis fixed by the choice of step of the lattice. The
clumsy notation for higher derivatives that Leibniz used is con-
venient here because it automatically takes account of the dimen-
sions, so the formulae appear the same for any system of units.

Newton did not publish his discoveries in the field of analysis.
He merely informed Leibniz that he was able to “compare the
areas of any figures in half of a quarter of an hour”. I do not know
whether this level of mastery of analysis is attained by present-day
first-year students.

§11. Leibniz

When speaking of the history of analysis, it is impossible not to
say a few words about the rivalry between Newton and Leibniz.
Newton was very seriously concerned with questions of priority.
Somewhat earlier he had stated the following principle: each
person must one day make a choice — either to publish nothing,
or to devote all his life to the struggle for priority. For himself
Newton apparently also made his decision on this, choosing both
policies together: he published hardly anything, and he was
constantly struggling for priority.

As for the invention of analysis, here the first publications were
due to Leibniz, who said that he developed his differential and
integral calculus independently of Barrow and Newton.
Nevertheless, discussion on this point flared up so fiercely that as
a result the opinion grew that it would be better not to contest
priority than to carry on such discussion.
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Gottfried Wilhelm Leibniz (1646-1716) was a diplomat of the
Elector (Kurfirst) of Mainz*, sent by him in 1672 to Paris in very
difficult conditions.

At that time France was already a united absolute power under
the authority of LouisXIV, who was very powerful militarily, but
Germany was fragmented and could not in any way oppose the
military might of LouisXIV, whose cavalry could cover the whole
of Germany in the course of a day. The Germans were very much
afraid of this and wished to find some way out. Leibniz, with his
inherent diplomatic ability, devised a method of rescuing Ger-
many from French invasion and was sent to Paris to carry out this
plan. Leibniz’s method was as follows: he wished to palm off on
LouisXIV the project of conquering Egypt. Leibniz formed an
appropriate projectand actually delivered itto the French govern-
ment. The French governmentcarried out the project, but not for
some time, in fact only under Napoleon, but the idea goes back to
Leibniz.

Although Louis XIV did not carry out Leibniz’s project, the visit
to Paris was not in vain. Leibniz made the acquaintance of Huygens
there. Huygens was a Dutch scientist, but in 1666 he was invited to
France to be the firstchairman of the Academy. Later, after the aboli-
tion of the Edict of Nantes and persecution for religious beliefs had
beenrestored in France, he decided toreturn to Holland.

From Huygens Leibnizlearnt about the existence of some very
interesting mathematical papers. Leibniz had been interested in
mathematics earlier, because he was always interested in anything
general and had all sorts of general ideas. **

* A peace movement founder and a liberal ruler, who even abolished the
burning of witches in his principality.

**  Among other things, Leibniz was responsible for the idea and project of the
Russian Academy of Sciences, formed on the instructions of Peter], and - also
on the instructions of Peter] ~ the project for a reconstruction (perestroika!)
of the Russian legal system, having in mind the transformation of this country
into a law-based state —a goal still to be achieved.
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For example, he considered it necessary to unite all the re-
ligions, or if not all, then at least all the Christian religions, or if
the orthodox Christians did not agree, then at least the Catholics
and Protestants, and if this was impossible, then to unite at least
all the Protestants. True, this was not successful, though he
applied all his forces.

In exactly the same way, Leibniz considered it necessary to
discover the so-called characteristic*, something universal, that
unites everything in science and contains all answers to all
questions. He also devised all possible universal methods for
solving all problems straight away**. For example, he manufac-
tured calculating machines following Pascal. (In contrast to
the arithmometer of Pascal, the arithmometer of Leibniz made
it possible to take square roots.) The arithmometer itself
was not preserved, but evidence has come down to us of a visit
by Leibniz to England, where he demonstrated his work to
British scientists (Hooke immediately improved his construc-
tion).

Thus, Leibniz liked mathematics very much, he wished
to unite all its methods, and Huygens advised him to study
Pascal. From Pascal’s successors Leibniz got hold of his letters
and notes (later lost) and found in the papers of Pascal a
picture which represented the celebrated differential triangle
(Fig.8).

[

*  A.N. Parshin explained to me that Leibniz’s “characteristic” essentially coin-
cides with the “Gddel numbering”, by means of which Godel proved the
incompleteness of all sufficiently rich theories, thus disproving the Leibniz-
Hilbert programme of formalizing mathematics.

*k  “A good legacyis better than the most beautiful problem of geometry”, wrote
Leibniz to I'Hopital, “since it plays the role of a general method and enables
us to solve many problems”. (18)
Reference to the idea of universality does not justify the cynicism of this joke
of Leibniz: a similar blasphemous phrase would have been unthinkable in the
mouth of Barrow and even Newton.
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At that time Descartes, Fermat and Pascal were able to
differentiate polynomials and knew how to draw tangents to
parabolas of all degrees, and the fundamental infinitesimal
triangle was already explicitly present in Pascal’s work. In the
work of other geometers ~ Huygens and Barrow — many objects
connected with a given curve also appeared. In Fig.8, for
example, there are the follow-
ing quantities: abscissa, ordi-
nate, tangent (the segment of
the tangent from the abscissa ~ AY
axis to the point of contact),
the slope of the tangent, the
area of a curvilinear figure,
the subtangent, the normal,

ordinate
the subnormal, and so on. tangent
Usually all these objects are /normal
considered separately. Barrow, — >
for example, derived relations subtangent subnormal
between the subnormal and Fig. 8.

The infinitesimal Pascal triangle and

the subtangent by means of a . .
various functions

new curve, drawn in a new

plane. Leibniz, with his in-

dividual tendency to universal-

ity, decided that all these quantities should be considered in
the same way. For this he introduced a single term for any of
the quantities connected with a given curve and fulfilling some
function in relation to the given curve — the term function.
Examples of functions were all the quantities that occur in
Fig.8, for example, abscissa, ordinate, subnormal, subtangent,
and so on.

Thus, according to Leibniz many functions were associated
with a curve. Newton had another term - fluent — which
denoted a flowing quantity, a variable quantity, and hence
associated with motion. On the basis of Pascal’s studies and his
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own arguments Leibniz quite rapidly developed formal analysis
in the form in which we now know it. That is, in a form
specially suitable to teach analysis by people who do not under-
stand it to people who will never understand it. Leibniz wrote:
“A poor head, having subsidiary advantages,... can beat the
best, just as a child can draw a line with a ruler better than the
greatest master by hand” (Guhrauer, Leibniz’s deutsche Schrif-
ten, vol.I, pp.377-381). Leibniz quite rapidly established the
formal rules for operating with infinitesimals, whose meaning
is obscure.

Leibniz’s method was as follows. He assumed that the
whole of mathematics, like the whole of science, is found
inside us, and by means of philosophy alone we can hit
upon everything if we attentively take heed of processes that
occur inside our mind. By this method he discovered various
Jaws and sometimes very successfully. For example, he dis-
covered that d(x+y) = dx+ dy, and this remarkable discovery
immediately forced him to think about what the differential
of a product is. In accordance with the universality of his
thoughts he rapidly came to the conclusion that differentia-
tion is a ring homomorphism, that is, that the formula
d(xy) = dxdy must hold. But after some time he verified that
this leads to some unpleasant consequences, and found the
correct formula d(xy) = xdy+ ydx, which is now called Leib-
niz’s rule. None of the inductively thinking mathematicians
— neither Barrow nor Newton, who as a consequence was
called an empirical ass in the Marxist literature — could ever
get Leibniz’s original hypothesis into his head, since to such
a person it was quite obvious what the differential of a
product is, from a simple drawing (Fig.9). Clearly, the incre-
ment of the area of a rectangle consists of three terms: the
areas of the two infinitely thin rectangles xdy and ydx, and
an infinitesimal of higher order dxdy, which can be neg-
lected. Having such a geometrical interpretation before
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his eyes, he would never suspect L LSS ITA IS IS IS L,
that the required increment was

equal to this neglectable quantity. ¢ 2
But for the scholastic Leibniz such /
an algebraic way of thinking was é
very typical.* z az
Fig.9.
Leibniz’s formula

§12. Discussion on the invention of analysis

Itis necessary to say a few words about the ugly dispute that flared
up between Newton and Leibniz after Leibniz published his
infinitesimal calculus in 1684.

For about ten years everything was quiet and peaceful, but
then the pupils of Newton and Leibniz began to argue about
which of the two first invented analysis.

The term analysis was used by Newton in the sense of “inves-
tigation” (of curves by means of power series). Newton regarded
analysis as a development of Descartes’ analytical geometry,
which he valued highly.

For authors of high school programmes and textbooks it
may be of interest that Newton studied the elements of
geometry not according to Euclid, as was usual (and is still
usual essentially), but according to Descartes, and that he
invented analysis possibly because of this unusual way of study-
ing geometry.

Later, on the advice of Barrow, who discovered his pupil’s
unfamiliarity with Euclid in an examination, Newton carefully
worked through Euclid and virtuously mastered the technique of

*  Aslate as 1686 Leibniz assumed that the circle of curvature intersects a curve

in no fewer than four coincident points.
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the ancients, but initially he did not like Euclid, because he
thought it was foolish to prove things that were quite obvious.

Newton’s analysis was the application of power series to the
study of motion, that is, functions and mappings, as we would now
say. For Leibniz, as we have seen, analysis was a more formal
algebraic study of differential rings.

Here are some details of this dispute, which show clearly that
one should never engage in disputes of this kind, because such
remarkable people and great mathematicians as Newton, Leib-
niz, and Johann Bernoulli appear here in a terrible light.

In this episode, for example, there appears an anonymous
Jetter. This letter, published by Leibniz unsigned in the “Journal
des Savants”, was written by Johann Bernoulli, a pupil of Leibniz.
In it he defends Leibniz and attacks Newton. But a year later
Newton and his pupils, answering this letter, called it Bernoulli’s
Jetter. Bernoulli, seeing that he had not been able to preserve his
incognito, reproached Leibniz in that this had caused him to fall
out with Newton, who had just introduced Bernoulli to the Royal
Society, and had promised to elect his son in the future. “T was
astonished”, wrote Johann Bernoulh to Leibniz, “how Newton
could have known that I wrote the letter, since nobody knew,
except you, to whom I sentit, and I, who wrote it”. But some time
later he was able to unravel the mystery. In one place there crept
into the letter the expression “meam formulam”, that is, a refer-
ence to “my formula”. Since this formula was due to Johann
Bernoulli, Newton easily recognized the author of the letter.

Leibniz wrote a letter to Princess Caroline, the wife of the
Prince of Wales, warning her that she “should not allow the
anti-religious Newton to disturb her simple-minded German
faith”. At that time (it was about 1715) this was a dangerous
accusation for Newton, who then held a high state office — he was
Master of the Mint. A state official accused of antireligion could
pay dearly for it. Fortunately for Newton, this did not happen in
his case (19).
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Newton also did not behave very well in this episode. He set
up a commission whose task was to examine the question of
priority and to take the final decision. At this time Newton was
President of the Royal Society*, so in the make-up of the commis-
sion to give it greater impartiality, in his words, numerous
scholars from foreign countries were included.

The commission considered the question of the dispute over
priority and published its report. The following words preceded
the report of the international authoritative impartial commis-
sion: “No one is a proper witness for himself. He would be an
iniquitous judge, and would crush under foot the laws of all
people, who would admit anyone as a lawfull witness in his own
case”. It goes on the defend Newton and accuse Leibniz for his
unfounded claims of priority concerning the unpublished results
of Newton.

Later, after the death of Newton, it became clear from his
papers that Newton had guided the drawing up of the report, and
the pathetic accusation of an unrighteous judge was written by
him personally, and of the “numerous scientists” not from Eng-
land there were only two, and only one of these was a mathemat-
ician.

Leaving this sad episode, from which we should all make
deductions about the scientific value of discussions about priority
and other matters peripheral to science, I shall say something
about those geometrical works that led to the creation of analysis.

*  Only after the death of Hooke in 1703 did Newton agree to take on the

position of President of the Royal Society. One of the first acts of Newton in
this position was to destroy all the instruments of the late Hooke, and also his
papers and portraits. So now the Royal Society had portraits of all its members
except Hooke. Not one drawing of Hooke, who was a member, curator and
secretary of the Royal Society, was preserved. In the folder of Hooke’s biogra-
phy recently published in the Soviet Union (20) there is a portrait, but this
portrait is not genuine, but made up by the methods of modern crime
detection from verbal descriptions of Hooke.
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CHAPTER 3.
FROM EVOLVENTS TO
QUASICRYSTALS

§13. The evolvents of Huygens

To Newton analysis was necessary as a basis for the investigation
of curves, which arise in mechanics and in geometry. We have
already seen some ways in which curves arise. Other ways were
found by Huygens, who investigated a number of problems in
analysis, optics and mechanics. For example, 11 years before the
first publications of Leibniz on analysis and 13 years before the
appearance of “Newton’s laws” Huygens published his calcula-
tion of the centrifugal force in motion in a circle (that is, he twice
differentiated a vector-valued function and used “Newton’s sec-
ond law”).

Huygens solved all the problems by means of elementary
geometrical constructions, but he obtained significant results.

One of Huygens’ important achievements was the investiga-
tion of evolvents, which he introduced. Evolvents occur in many
old textbooks on analysis, beginning with the first textbook of
I’'Hépital and going roughly up to Goursat, but in modern
courses there is a tendency to pass over them,

Suppose we are given a curve. An evolvent of it is the trajectory
described by the end of a stretched string unwinding from our
curve (Fig.10). A remarkable property of an evolvent s that it has
a cusp at the point P and if we attempt to describe it in a
neighbourhood of this point by means of the Taylor series we see
that it is not smooth there, although it appears to be (and,
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moreover, it has tangents at all points). The lack of smoothness
follows from the fact that the radius of curvature at a point X of
the evolventis equal to the length of the free end of the string YX,

Fig. 10.
Formation of an evolvent by means of a string

and since the string becomes shorter as X approaches F, the
curvature at P becomes infinite, and so the point P itself is
singular. It turns out that at this point the evolvent has a singular-
ity of type 3/2, thatis, in a neighbourhood of Pitis diffeomorphic
to the semicubical parabola y = /2. Why is the evolvent drawn
with two branches in the figure? Firstly, if we write the equation
of the semicubical parabola in the form y? = %, we see that it has
a second branch, and secondly this can be seen if we look at this
picture from the point of view of modern geometry.

Suppose that our curve is convex, and that s is the natural
parameter along it (that is, the length of the curve), ©(s) is the
radius vector of the point Y of the curve corresponding to the
value of the parameter s, and that ¢is the length of the free part
of the string. Then the radius vector of the point Xof the evolvent
obtamed when the stnng unwinds from the curve at Yis equal to
7(s) + YX 7(s) + &' (s), since sis the length along the curve. We
thus obtain amapping F of the plane with coordinates (s, #) to the
plane in which our curve lies. Itis easy to see that this mapping is
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smooth, but it is not a difftomorphism. Simple analysis of the
mapping Fshows that its image is part of the plane lying on one
side of the curve, and all points of the image not belonging to the
curve have exactly two inverse images (see Fig.11), and at each
point of the curve there is only one inverse image. Therefore the

/////

\ s \
Fig.11. Fig.12.
Construction of the two inverse im- Formation of evolvents by folding

ages of the point X

mapping F is constructed as the mapping of projection onto a
plane of the surface folded over our curve (Fig.12). Such a
mapping is called a folding mapping.

Itis now obvious how an evolvent arises. This happens if we fix
the length of the string, that is, the sum s+ ¢. The equation s + t = a
defines on the (s, f)-plane a family of parallel lines, which be-
comes a smooth family of curves on the folded surface and after
projection it gives the family of curves below. Each evolvent
corresponds to some value of the length @ and therefore lies
entirely on one of these curves. But each of these curves has two
branches. One branch corresponds to the upper part of the curve
on the surface, and the other to its lower part. This is how the
second branch of the evolvent appears, which corresponds to the
lower part. These are two parts of one curve, and the second is an
analytic continuation of the first corresponding to negative
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values of the parameter ¢ (physically this means that the string
now winds back on itself; Fig.13).

The presence of the remarkable singular points on evolvents
was discovered by Huygens. He used these remarkable points very
well in creating the isochronous pendulum. If a pendulum hang-

Fig.13. Fig. 14.
Formation of the two branches of The isochronous pendulum of
evolvents by means of the string Huygens

ing from a string is made to oscillate between sidepieces made in
the form of a cycloid (Fig.14), then it will move along an evolvent
of the cycloid (which is also a cycloid) and all its oscillations (that
is, not only small, but also large) will have the same period.

§14. The wave fronts of Huygens

Evolvents are connected with an object encountered in another
investigation of Huygens, namely in the theory of wave fronts.
Huygens, considering the propagation of waves issuing from
some source, discovered that singularities can also arise here.
Suppose, for example, that the source has the form of an
ellipse and that the waves are propagated inside the ellipse with
unit speed. According to Huygens’ principle, in time ¢ the wave
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front will be the envelope of a family of circles of radius ¢ with
centres on the ellipse and for small ¢it will be an equidistant curve
of the ellipse. If ¢ increases, then at some instant singularities
appear on the envelope (Fig. 15). They will also be of semicubical
type. Singular points were very important for Huygens in the
investigation of the correspondence between waves and rays,
investigations that we now attribute to the calculus of variations,
optimization, Hamiltonian mechanics. Therefore in his work in
both the theory of waves and the theory of the pendulum, carried
out in the 1650s, there were many similar figures with an inves-
tigation of all the singularities that arise there.

Let us consider in the plane the region bounded by some
curve, and suppose that one of the points of the curve is the
source of a perturbation (Fig.16). Then the fronts consisting of

Fig. 15. Fig. 16.
Singularities of the wave front Evolvents as wave fronts

points which the perturbation reaches at a definite time, bypass-
ing an obstacle bounded by the curve, will be evolvents of this
curve in a neighbourhood of the boundary of the obstacle. Thus,
the evolvents of a curve that bounds some region can be regarded
as Huygens wave fronts on a manifold with a boundary. Such a
front, although it seems at first glance astonishing, has a singular-
ity of type 3/2 at points of the curve (and consequently after
analytic continuation a second branch appears on it).
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§15. Evolvents and the icosahedron

Further extension of these investigations leads to the study of
singularities in three-dimensional space or singularities in the
plane, butin a more complex situation. The resulting curves and
surfaces also turn out to be very remarkable. Many of them were
studied at the time of Huygens or a little Jater. For example, a
famous caustic was introduced by Tschirnhausen soon after Huy-
gens, and the wave fronts and the properties of evolvents con-
nected with them appeared in the first textbook on analysis,
written by I’Hopital from Bernoulli’s lectures.

This book examines, in particular, the following case. Suppose
we are given a curve in general position in the plane. On such a
curve there may be a point of inflexion, but only of the simplest
type (the third derivative of the corresponding function is non-
zero, since the second and third derivatives cannot vanish simul-
taneously for a function of general position). We need to explain
what the family of evolvents of such a curve looks like. As I
understand it, for mathematicians of that time ~ Barrow, Newton,
Leibniz, Bernoulli, and even for his pupil I'Hépital — this problem
was completely within their powers. Of course, it presented cer-
tain difficulties for them, but
incomparably smaller diffi-
culties than for modern
mathematicians. I think that /
the majority of modern stu-
dents studying analysis, even
the best ones, would not be

in a position to construct an Fie. 17
ig. 17.

evolvent of the cubical para- An evolvent of a cubical parabola

bola y =x3. The answer to this

problem is very remarkable (Fig.17). As before, the evolvent has
a singularity of type 3/2 on the curve itself, but it also has a
singularity of type 5/2 on the tangent drawn through the point
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of inflexion. If we change the length of the string, we obtain a
family of curves whose singularities fill two curves — the cubical
parabola itself and the tangent at the inflexion (Fig.18). Ben-
nequin (I) discovered this picture in ’Hépital’s textbook “Foun-
dations of analysis”.

N
Y \ )
Fig. 18.
The family of evolvents close to the point of inflexion of the curve

Although this picture appears in old works, it became possible
to discover it only because it was drawn by modern mathematici-
ans working on another problem, which seems to have no rela-
tion to evolvents. In modern mathematics it was discovered that
the singularities encountered here are connected with groups
generated by reflections. In particular, our picture is connected
with the group Hjs. Thisis the group of symmetries of the icosahe-
dron generated by reflections in its 15 planes of symmetry (21).

The appearance of the regular polyhedrais often unexpected.

Kepler, when studying the motion of the planets, stated as well
as the three laws that we know a fourth mystical law which states
that the major semiaxes of the orbits can be calculated in terms
of the regular polyhedra. Ever since then regular polyhedra have
turned up equally unexpectedly in other cases where, however,
they were more connected with the essence of the matter.

For the symmetry group of the icosahedron we can consider
the so-called discriminant. Here is how itis obtained. The space R®
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is complexified and turns into C?, the complex three-dimensional
space in which the group H; also acts. The quotient space C? with
respect to this group is again isomorphic to C? (this follows
immediately from an analogue of a fundamental theorem about
symmetric polynomials which, incidentally, has also vanished
from the Moscow University algebra course). Thus, here there
are three basic invariants in terms of which all the invariant
polynomials of this group can be expressed polynomially (22). On
the other hand, in the original C? there are the mirrors in which
the reflections are carried out (15 of them). The number of
images of a point not lying on any of the mirrors is equal to the
order of the group, that is, 120. For a point on a mirror there are
fewer images. A point of the quotient space — an orbit of this
group in the original three-dimensional space — is said to be
regular if the points of which it consists do not lie on the mirrors.
The remaining orbits and the points of the quotient space corre-
sponding to them are said to be irregular. The set of all irregular
orbits — the image of one mirror under the factorization mapping
— is a subvariety of the quotient space. The intersection of this
subvariety with the set of real points is a certain variety with
singularities, which is called the discriminant of the group Hs.

In exactly the same way, for any other group generated by
reflections we can construct a certain variety with singularities.

Here is an example where this can be seen explicity. In the
plane let us consider three lines making angles of 120° with each
other (Fig.19).

AN &

[ ]
[ ]
4
Fig.19.

A group of reflections, its mirrors, an orbit and the discriminant
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The group generated by reflections in these lines contains six
elements, and a regular orbit consists of six points. These can all
be represented as follows. We realize our plane as the plane in
three-dimensional space with coordinates z, 2z, 2z given by the
equation z; + 2z + z3 = 0. In this three-dimensional space there acts
the group of permutations of three elements, which interchanges
the coordinate axes. This group is generated by reflections in the
mirrors z = z; whose traces on our plane are the original three
lines. Therefore the orbits in the plane are simply triples of
numbers with zero sum, considered up to permutations. The
regular orbits are triples all three of whose numbers are distinct.
How can we naturally parametrize these unordered triples of
numbers (they are complex, since we have assumed that com-
plexification has been carried out), that give zero sum? This
method is well known, since an unordered set of three numbers
is uniquely defined as the set of roots of a cubic equation z* + A12?
+ A2z + Ag = 0. But our numbers give a zero sum, so A; =0, and the
space of orbits of this group generated by reflections is uniquely
parametrized by cubic equations of the form 2> + az+ 6= 0. That
is, the quotient space is simply the plane with coordinates (a, ).
To each point of this plane there corresponds a cubic polynomial,
and to each polynomial there corresponds its three roots, among
which there may be equal ones. If the polynomial has coincident
roots, then the orbit corresponding to it is irregular. Thus,
we obtain the equation of the discriminant of this group in the
space C? by equating to zero the discriminant of the cubic poly-
nomial with coefficients ¢ and 5. Thus, the discriminant in the
given case is the curve 4@® + 278 = 0, that is, a semicubical
parabola. This group generated by reflections is the group corre-
sponding to all those semicubical singularities encountered by
Huygens.

There are also similar constructions for the discriminants of
other groups generated by reflections. Thus, for the group
generated by reflections in the planes of symmetry of the icosahe-
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dron we obtain a certain surface in three-dimensional space. A
theorem that we can prove concerning this is that this surface is
diffeomorphic to a surface drawn by I'Hoépital (Fig. 18). While
the singularities of the evolvents in a neighbourhood of points of
convexity of the curve are singularities of type 3/2, to the points
of inflexion there corresponds the singularity of the space of
irregular orbits of the icosahedral group.
Inordertoobtainasurface in three-dimensional space from the
family of evolvents of a cubical parabola, we need to move all these
evolvents in R* into different horizontal planes, namely to lift the
evolvent corresponding to the parameter value « to the height a.
Figure 18 can therefore be regarded as an image of a surface, and
the theorem asserts that this surface is diffeomorphic to the dis-
criminant of the group of symmetries of the icosahedron Hs.

§16. The icosahedron and quasicrystals

The theory of groups generated by reflections is connected with
crystallography. Namely, some of these groups preserve the crys-
ta] lattice. For example, the group considered above, generated
by reflections in three lines in a plane, preserves the hexagonal
lattice (Fig.20). All crystallographic groups have been classified,
and everything about them is

well known. They correspond

to simple Lie algebras (and

consequently simple Lie

groups). However, the group

of the icosahedron does not

fall under this classification, Fig. 20.

since it does not preserve any A hexagonal crystal lattice
lattice in three-dimensional

space. In exactly the same way the group of the pentagon does
not fall under this classification. This reflects the fact that regular
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pentagons do not occur in crystals and there are no ornaments
with fifth order symmetry than can fill the plane.

Meanwhile in the last few years experimental physicists concer-
ned with the X-ray analysis of crystals have begun to discover pentag-
onsin quite large numbers in X-rays (23). In other words, they have
discovered things that apparently have pentagonal symmetry. They
have been called quasicrystals, remembering the mathematical
theoremthat asserts that they cannotbe actual crystals.

What can we make of all this? It turns out that in the theory
just mentioned - in the theory of singularities connected with
evolvents — there is a construction that also leads to similar
quasicrystals.

For clarity let us consider not the group of the icosahedron, but
the simpler group of symmetries of the pentagon. Itis well known
that this group cannot be realized as a group of symmetries that
preserve some lattice in the plane. Nevertheless, let us consider
five-dimensional space, in which, just as in the example con-
sidered above, there acts the group of permutations of the coordi-
nates, consisting of 120 elements. This group obviously preserves
the five-dimensional lattice of integer points. (In the theory of
groups generated by reflections it is known as the group A,.)

The group of the pentagon, which is embedded in the group
of permutations, then also acts in the five-dimensional space, but
this representation is reducible. In fact, the rotations of the plane
that take a regular pentagon into itself have as eigenvalues the
fifth roots of unity. The roots themselves are situated at the
vertices of a regular pentagon and, joining the conjugate com-
plex roots in pairs, we find that the space R splits into the sum of
three invariant subspaces — a one-dimensional space correspond-
ing to the root 1, and two two-dimensional spaces. The one-di-
mensional space — the diagonal - is the subspace of vectors whose
five coordinates are all equal. In the orthogonal complement to
the diagonal there acts, as before, the group of the pentagon, and
as before there is a lattice that it preserves. Butin the two-dimen-
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sional invariant spaces there are no lattices. As simple calcula-
tions show, each of the two-dimensional invariant subspaces lies
irrationally with respect to the lattice in R?, that is, it contains no
integer point except the origin (this follows from the fact that the
golden section is irrational).

Now suppose that in the ambient space there is a function with
the symmetry of alattice (periodic, that is, invariant with respect to
shifts by vectors of the lattice and also invariant under the action of
all motions and reflections that take the lattice into itself). The re-
striction of this function to an invariant two-dimensional subspace
will not be a periodic function, but an almost-periodic function.
This almost-periodic function preserves some rudiments of the
symmetryof the pentagon. We can discover them as follows (24).

Let us expand the resulting almost-periodic function in the
plane in a Fourier type series, flx) = X fie/»». The wave vectors k
(the “numbers” of the Fourier harmonics) run through some set
of vectors of the dual plane. This set is called the spectrum of the
almost-periodic function. In the spectrum there are preserved
the traces of the pentagonal symmetry of the original periodic
function, defined in the ambient (four-dimensional or five-di-
mensional) space.

Let us consider first the spectrum of this original periodic
function. This spectrum, generally speaking, is an ordinary lattice
dual to the original lattice in the ambient space.

To each two-dimensional subspace of any space there corre-
sponds the two-dimensional quotient space of the dual space. It
is obtained by factorizing by the space of linear forms equal to
zero on the two-dimensional subspace in question.

In other words, the space of wave vectors for the two-dimen-
sional plane in question is obtained from the large space of wave
vectors of the ambient space by a natural projection along a
subspace of it of codimension two.

In thislarge space of wave vectors of the ambient space there lies
the lattice of Fourier harmonics of the original periodic function,
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Plate 1. Model of the diffraction pattern for a quasicrystal with fivefold sym-

metry. The centres of the coloured disks are two-dimensional projections of the
integer points in the hyperplane x1 + x2 + x3 + x4 + x5 = 0 in five-dimensional
space. The sizes of the disks decrease exponentially with five-dimensional distance
from the origin, and their colours redden with increasing distance from the
projecion plane (see p. 65).



plane by three parallelograms

coloured vellow, green and blue. The tiling is obtained by slicing through a

Plate 4. Quasiperiodic tiling of a portion of the

three-dimensional cubic lattice with the plane z=ax+by, with a=N%/2 and =2 /2.

The parallelograms are the projections of the cubic faces which intersect the

plane (see p. 111).

definedin the ambient space. The spectrum of the almost-periodic
function is obtained from this multidimensional lattice by the nat-
ural projection of the dual spaces described above (by the projec-
tion dual to the embedding of the plane in the ambient space}).

In view of the “irrational” position of the two-dimensional
plane with respect to the lattice of periods of the ambient space,
the projection of the multidimensional space of harmonics is an
everywhere dense set in the plane of wave vectors. Thus, the
spectrum of the almost-periodic function obtained by restriction
to the plane is, generally speaking, an everywhere dense set in the
plane of wave vectors. At first glance it is difficult to extract from
this any information about the symmetries.

We now turn our attention to the coefficients of the Fourier
series. In the original periodic function in the ambient space
(which we assume to be stnooth) the Fourier coefficients decrease
rapidly as the wave vector moves away from the origin. Therefore
only finitely many Fourier coefficients corresponding to harmon-
ics with small numbers have an appreciable value.

Consequently, only finitely many harmonics of the almost-pe-
riodic function obtained by restriction to the plane have an
appreciable value. The corresponding points of the spectrum
form a finite set. It is the projection on the plane of a finite cloud
of points of the multidimensional lattice close to the origin. This
projection preserves the traces of the pentagonal symmetry of
the multidimensional lattice in the form of striking (though not
quite regular) pentagons (Fig.21 and Plate 1).

A similar situation exists for the representation of the group
of symmetries of the icosahedron (25).

Just this situation explains the connection between the
icosahedron and Huygens’ evolvents, so the discovery of it can be
regarded as the completion of the research begun by Huygens.

On the other hand, in the X-ray analysis of crystals we see
essentially the spectrum of a function that has the symmetry of a
crystallographic lattice (more precisely, the projection of this
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bers. A quasicrystallic spectrum

In the analysis of
these pictures for certain substances we notice regular structures
of approximately regular pentagons (Fig.21). (23)

The theory constructed to explain the connection between
icosahedra and evolvents immediately explains how such a spec-
trum can be obtained. The function in question in three-dimen-
sional space must be not periodic but almost-periodic. Namely, it
must be obtained from a periodic function of six variables that
admits the symmetry of the icosahedron under restriction to an
“irrational” three-dimensional space. Without dwelling on the
question of the physical meaning of the three additional “quan-
tum” variables, we just observe that theories proposed by physi-
cists to explain the observations of quasicrystals are close in their
ideas to the constructions described above, which arise as a
secondary product of the investigation of the singularities of
evolvents and Huygens wave fronts - it is one more example of
the astonishing unity which so struck Newton and his contem-
poraries that they interpreted it as proof of the existence of God.
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CHAPTER 4.
CELESTIAL MECHANICS

§17. Newton after the Principia

Neither the discovery of the system of the universe nor the
creation of theoretical physics nor the construction of celestial
mechanics occurred in the annual plans of Cambridge University
or the Royal Society, or in their plans for prospects up to 1700.
Newton wrote his 700-page Principia in eighteen months at the
urgent request of Halley. But since the book was not included in
the plan Halley had to publish it on his own account. i

At that time Newton was a professor at Trinity College. He had
three students. He gave lectures — on arithmetic, geography,
optics, and other sciences. His lectures were only given in the
Autumn Term (10 lectures a year) and lasted for half an hour.
Sometimes there was no audience (Newton’s lectures were re-
nowned for their incomprehensibility), and then he just re-
turned home.

Newton spent most of his time and energy on alchemy and
theology. His main discoveries were made in his two student
years, in the twenty-third and twenty-fourth years of his life. After
the Principia (which he finished at the age of 44) Newton with-
drew from active scientific work.

In 1696 Newton was appointed Warden and then Master of the
Mint in London and played a significant part in the economic
reforms carried out by his former student Lord Montague Hali-
fax (founder of the Bank of England, and leader of the country
during the King’s absence).
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The revolutionary changes that dragged on for several de-
cades in England, beginning with the Civil War and ending with
the “Glorious Revolution” in 1688, brought the economy of the
country to a parlous state: corruption and other negative in-
fluences of the previous decades required economic reforms, in
the course of which it was necessary to withdraw rapidly from
circulation the old unsound money, which was not acceptable to
foreign states.

In a short time Newton increased the minting of money eight-
fold, without setting up any new machines. At the same time he
set up an investigation and in the one year 1697 he took legal
proceedings, as a result of which about 20 forgers were executed.

In 1703 Newton was made President of the Royal Society (see
p. 51) and held this office until death in 1727.

§18. The natural philosophy of Newton

Among the most important physical principles contained in the
Principia we should mention: 1) the idea of relativity of space and
time (“in nature there is no body at rest... nor uniform motion”),
2) the conjecture that inertial coordinate systems exist, 3) the
principle of determinacy: the positions and velocities of all the
particles in the world at an initial instant determine all their
future and all their past.

After the Principia the universe, which had seemed chaotic,
took on the likeness of a well-regulated clock. This regularity and
simplicity of the basic principles, from which all the complicated
observed motions were derived, were perceived by Newton (26)
as proof of the existence of God: “This most beautiful system of
the sun, the planets, and the comets, could only proceed from the
counsel and dominion of an intelligent and powerful being...
This being governs all things, not as the soul of the world, but as
Lord over all; and on account of his dominion he is wont to be
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called the Lord God (roavtoxpoatop)”. Theoretical physics re-
mained in the paradise created by Newton for more than two
hundred years, until quantum mechanics and general relativity
theory dispelled these illusions.

It is impossible here to list even the main concrete achieve-
ments presented in the Principia. I recall merely the construction
of the theory of limits (which differs from the modern theory
only in notation), the topological proof of the transcendence of
Abelian integrals (Lemma XXVIIT), the calculation of the re-
sistance to motion in a rarefied medium with large supersonic
speeds (which found applications only in the age of space travel),
the investigation of the variational problem about a body of least
resistance for given length and width (the solution of this prob-
lem has an internal singularity, of which Newton was aware, but
of which his publishers in the 20th century were not apparently
aware and smoothed outa figure (27)), and the calculation of the
perturbations of the motion of the moon by the sun.

§19. The triumphs of celestial mechanics

The development of celestial mechanics after Newton is a long
series of triumphs for the law of universal gravitation: the ap-
parent deviations from it with time were accounted for by insuffi-
ciently accurate calculation of perturbations. (A notable excep-
tion was the precession of the perihelion of Mercury. Its observed
value is 599" per century, but calculation of the perturbations
gives 557". The discrepancy of 42" is the effect of general relativity
theory. New physics usually begins with a refinement of the last
digits!)

The first triumph of the theory of gravitation was the prediction
of the return of Halley’s comet. Halley did not really discover the
comet named after him, butnoticed the resemblance of the orbits
of the comets of 1456, 1531, 1607 and 1682 and ventured to predict
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the return of the comet after 76 years, that is, in 1758. But because
of the perturbation of Jupiter and Saturn the comet was late (ac-
cording to Clairaut’s calculations by 618 days) and crossed the
perihelion onlyin March 1759, almost as Clairaut had predicted.

Another phenomenon that raised doubts about the universal-
ity and accuracy of the law of gravitation was the slow but invaria-
bly observed acceleration of Jupiter and deceleration of Saturn
(Kepler, 1625; Halley, 1695). If this process had been continuing
for several million years, it would have completely changed the
solar system: Jupiter would have got nearer the Sun, and Saturn
further away from it.

The total mass of the planets is roughly a thousandth of the
mass of the Sun, so the mutual perturbations of the planets by
each other in a year constitute a quantity of the order of a
thousandth of the path described. If these perturbations had
accumulated over thousands of years, the planets would be able
to fall into the Sun or to collide with each other. The Earth would
be able to leave the Sun and to be frozen.

Why did this not happen? The reason is that the perturbations
experienced by the planets at different times are not actually in
the same direction, but have an oscillatory character.

Mathematically such perturbations are expressed as sums of
terms proportional to cos ®¢ and sin ®¢ — they are periodic,
harmless perturbations. The accumulated perturbations appear
in the form of terms increasing with time, proportional to ¢, or
oscillations of increasing amplitude ¢cos(wt + 0) (Fig.22). Terms
proportional to time are called seculay; since, for example, the
perturbation at, even if the coefficient ¢ is small (say of the order
of one thousandth) becomes large over several centuries.

Thus there arises the problem of secular perturbations: in view
of the immensity of cosmological time (billions of years) even
very small secular perturbations change the history of the solar
system, and in particular the Earth, in a cardinal way.
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Periodic, secular and mixed perturbations

§20. Laplace’s theorem on stability

The question is, do there actually exist secular perturbations, or
are they artefacts, a consequence of poor mathematical proce-
dure? (For example, let us consider a pendulum oscillating ac-
cording to the law x = cos ¢, and suppose we slightly perturb the
frequency ®, changing it to ® + @, where ais very small. Then the
expansion of the perturbations in a series of powers of a reduces
in the first approximation in a to the expression x = cos(® + a) =
cos ®f— at sin ®t..., which contains the dangerous “mixed” term
at sin wt. Meanwhile the true amplitude of the oscillations of the
pendulum does not increase in the course of time, but remains
bounded.)

Analysis of planetary perturbations finally led Lagrange (1776)
and Laplace (1784) to “Laplace’s theorem on the stability of the
solar system” (28): the mutual perturbations of the planets, moving
in slightly eccentric non-intersecting ellipses almost in the same
plane and in the same direction, lead only to almost-periodic oscil-
lations of the eccentricities and of inclinations close to zero, while
the distances from the Sun oscillate close to their initial values.
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In other words, the major axes of the Kepler ellipses do not
have secular perturbations.

Laplace’s “theorem” was not proved in the strict sense, since
he represented the perturbations by series and proved only the
absence of secular terms among the first few terms of the series.

Subsequently the absence of secular and mixed terms was
established for all the terms of the series. But the fact that there
are no secular terms does not imply that the lengths of the major
axes of the Kepler ellipses always remain close to their initial
values, since the series themselves diverge (some of their terms
are large). The first terms of the series give a good approximation
for a restricted time interval, but they do not enable us to judge
the behaviour of the orbits in cosmological time.

As for the mutual perturbations of Jupiter and Saturn, as
Laplace showed in 1784 they lead to only a long-periodic but not
secular change in the eccentricities of the orbits with a period of
about 900 years. For the 450 years during which the perturbation
accumulates it only manages to move Saturn and Jupiter by less
than one degree.

It is very important that the orbits are almost in one plane; if
the orbit of the Moon turned through 90°, then the eccentricity
of the Moon’s orbit under the influence of perturbations from
the Sun would begin to increase so rapidly that the Moon would
run into the Earth in four years (29).

§21. Will the Moon fall to Earth?

For many years the motion of the Moon remained a very compli-
cated problem, since because of the nearness of the Moon we can
easily notice the smallest changes in its motion, and in the expan-
sions one has to take account of terms of a high order of small-
ness. Already in 1693 Halley noticed that when comparing the
observations of eclipses from Arab and ancient sources with
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modern ones the period of rotation of the Moon, and con-
sequently its orbit, had decreased (the “secular acceleration” was
10" per century).

In 1770 the Paris Academy offered a prize for research on
whether the theory of gravitation could explain this phenome-
non and whether the decrease in the lunar orbit would lead to
the Moon falling to Earth. Euler in a competitive essay considered
it “strictly established with unquestionable clarity that the secular
inequalities of lunar motion could not be caused by gravitational
forces”. He explained the acceleration of the Moon by the re-
sistance of the medium, which would finally lead to catastrophe*.

But in 1787 Laplace found the explanation: the long-period
oscillations of the eccentricity of the orbit of the Earth under the
influence of planetary perturbations. The period of these small
oscillations is of the order of several tens of thousands of years, so
the effect seems secular.

The oscillations of the eccentricity of the orbit of the Earth are
one of the main factors causing the approach of glaciers (because
of these oscillations the effective latitude of Leningrad in summer
oscillates between the latitudes of Taimir and Kiev in the course
of several tens of thousands of years — Milankovich, 1939).

As for the Moon, the explanation of Laplace is only half true:
after taking account of the changes in the eccentricity of the
Earth’s orbit there remains an apparent secular acceleration of
the Moon (5" per century) caused, it seems, by tidal friction
(according to some estimates, the Bering Sea gives almost half the
effect). Under the influence of tidal friction the Moon is all the
time receding from the Farth, and the rotation of the Earth is
slowing down. The days become twice as long in a time of the

*  Euler’s theory is apparently applicable not to the Moon but to Phobos, a
satellite of Mars, which is retarded by its atmosphere and that is why it is
accelerating. It would land on Mars in 100 million years, but most likely before
that it would be destroyed by tidal forces and transformed into a ring.
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order of billions of years (the seasonal oscillations of the exten-
sion of the day as a consequence of the redistribution of momen-
tum in the atmosphere and the ocean is a hundred times greater
than the annual lengthening of the day because of tidal friction).
It is the slowing down of the rotation of the Earth that leads to an
apparent acceleration of the Moon (30).

§22. The three body problem

While the problem of the motion of two points was solved by
Newton, a precise analytic solution of the problem about the
motion of at least three attracting material points under general
initial conditions (the three body problem, already posed in the
Principia) has not only not been found but is in a certain sense
impossible (31).

Nevertheless Euler (32) had already given some special solu-
tions, for which the mutual position of all three bodies remains
constant—all the time the bodiesare situated either at the vertices
of an equilateral triangle (Lagrange (33)) or on a straight line.

These solutions seemed to be a purely mathematical curiosity
until (in 1906 and later) “Greeks” and “Irojans” were discovered
on the orbit of Jupiter — two groups of small planets which form
with the Sun and Jupiter two equilateral triangles (the Trojans
move behind Jupiter, and the Greeks outstrip it; Fig.23).

The solutions of the three body problem corresponding to
triangles are stable, at least in the linear approximation, while the
solutions for which all three bodies are on one line are automat-
ically unstable and so until recently they have been regarded as
practically useless.

However, in the age of space travel the position has changed.
A station located at the “point of libration” between the Earth and
the Sun corresponding to the Euler solution is in optimal condi-
tions for observing the Sun. This position is unstable, like the
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“Greeks” and “Trojans”

“head over heels” position of a pendulum. Small random devia-
tions of the station from the point of libration increase in the
course of time. But since the point of libration corresponds to the
exact solution, the rate of growth of small perturbations is small
too. It turns out that the expenditure of energy for a constant
correction of the orbit forcing the station to be close to the point
of libration all the time is small (the less the deviation is regarded
as admissible, the smalleritis). For a proper choice of correction,
taking account of the perturbing influence of other bodies does
not lead to a change in the final deduction (34).

Thus the exact solutions discovered in the 18th century are
now used in practice in space travel.

§23. The Titius-Bode law and the minor planets

At the time of Newton the solar system ended with Saturn.
Uranus was discovered by chance by Herschel on 13 March 1781
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(“not burdened with traditions, which in the training of experts
everywhere restrict the sphere of their duties and the field of
admissible activity, he was able to choose unbeaten paths” —
Pannekoek, History of Astronomy).

The discovery of Neptune “at the tip of the pen” (in the place
predicted by Adams and Leverrier from the perturbations of
Uranus) in September 1846 was a new triumph for the law of
universal gravitation.

However, the predicted orbit differed greatly from the true
one (its mean distance from the Sun was about 30 astronomical
units instead of the predicted 38, and the true eccentricity was
much less than predicted).

Some investigators think that the discovery of Neptune in the
predicted place was a happy accident: existing observations of the
perturbations of Uranus imply the predicted position of Neptune
only on the basis of the false conjecture adopted by Adams and
Leverrier that the radius of the orbit is subject to “Bode’s law”
(discovered by Titius).

The empirical law of Titius, the publication of which was
revealed by Bode in 1772, gives the following dimensions of the
orbits: 4 (Mercury), 4 + 3 (Venus), 4 + 3x2 (Earth), 4 + 3x4
(Mars), 4 + 3x8(?), 4 + 3x16 (Jupiter), 4 + 3x32 (Saturn), 4 + 3x64
(Uranus). The number 28 had to be omitted, since there was no
known planet between Mars and Jupiter. People began to look for
the missing planet.

The discovery on 1 January 1801 of the minor planet Ceres
(diameter about 1000km) was quickly followed by the discovery
of Pallas (600km), Vesta and Juno. The orbits of all these minor
planets were found between the orbits of Mars and Jupiter. At the
present time astronomers regularly trace the motion of two and
a half thousand similar bodies, now called asteroids, whose
diameters range from hundreds of kilometers to hundreds of
meters. The number of asteroids of size d or more increases, it
seems, in inverse proportion to the square of d. It is believed that
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the total number of asteroids of diameter greater than a kilome-
ter is at least a million.

The orbits of certain asteroids pass close to the orbit of the
Earth. Other asteroids, deviating when passing close to Jupiter or
Mars, can greatly change their orbits and also appear close to the
Earth.

From modern data collisions of the Earth with asteroids of
more than half a kilometer in diameter occur at intervals of a
hundred thousand years (35).

Craters formed by these collisions have sizes of the order of
tens of kilometers (Kaluga stands on one of these craters), and
sometimes hundreds of kilometers (close to the mouth of the
River Popigai in northern Siberia). A particularly large asteroid
could make a hole in the core of the Earth (Whipple suggests that
Iceland was formed in this way).

The probability of a collision with the 20-kilometer asteroid
Eros (meeting speed 14km/s) during the next 400 million years
is, according to modern estimates, about 1/5, and the diameter
of the crater so formed would be about 250km.

The consequences of a collision with a large asteroid are
similar to the consequences of a nuclear war: the atmosphere
hardly lowers the speed of the asteroid, and all its kinetic energy
is instantaneously emitted at a stroke on the Earth.

Particularly powerful collisions may have ecological signifi-
cance and may influence the extinction of forms in various
continents and even on the whole planet. Thus, the effect of a
collision with an asteroid is comparable with the results of man’s
activities and does not threaten the integrity of the Earth.

§24. Gaps and resonances

The periods of rotation of the majority of asteroids round the Sun
are included between the periods of rotation of Mars and Jupiter,
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but fill this interval extremely irregularly. In 1866 Kirkwood
discovered “gaps” (Fig.24) — intervals on the axis of periods free
from periods of asteroids. The gaps correspond to resonances
(commensurability of the periods): one of the gaps is close to half
the period of Jupiter, another is close to 1/3, and there are gaps
corresponding to resonances 2/5, 3/5, and so on, the higher the
order of the resonance, the smaller is the gap.

There are slits similar to gapsin the ring of Saturn. The largest
slit between rings A and B was observed by Cassini in the 17th
century. In photographs taken by Voyager-2 (36) of ring B of
Saturn (Fig.25) the fine structure is clearly visible: the ring of
width 30000km consists of a series of thinner rings, separated by
wide slits, each of the fine rings is separated by narrower slits into
finer rings, and so on, and finally into rings whose width is
apparently comparable with its thickness, which is of the order of
a kilometer.

The slitsin the ring of Saturn correspond to resonanceswith its
satellites. Several years ago in the course of observation from an
aeroplane of the occultation of a star by Uranus its rings were ac-
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Fig. 25.
Ring of Saturn

cidentally discovered. Analysis of their resonance structure
enabled the Soviet astronomers N.N. Gor’kavyi and A. M. Fridman
(37) to predict a whole series of satellites of Uranus. Six months
later, during the flight of Voyager-2 close to Uranus on 24 January
1986, all these satellites were discovered in the predicted positions
from Uranus — one more triumph for Newton’s theory of gravita-
tion.

In the hands of Euler, Lagrange and Laplace the mathematical
methods of Newton underwent an enormous technical develop-
ment, and from the time of Leverrier there has been an excellent
agreement of theory and observations. But as far as ideas were
concerned all these complicated calculations remained versions
of the theory of perturbations created by Newton.
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The two hundred year interval from the brilliant discoveries
of Huygens and Newton to the geometrization of mathematics by
Riemann and Poincaré seems a mathematical desert, filled only
by calculations.

Poincaré, the founder of topology and the modern theory of
dynamical systems, posed the question anew. Instead of searching
for formulae that express the change in the positions of celestial
bodies over the course of time, he asked a question about the
qualitative behaviour of the orbits: could the planets approach
each other, could they fall into the Sun or go far away from it, and
so on. Laplace’s “theorem” does not give answers to these ques-
tions relating to an infinite time interval, since his series, as
Poincaré established, diverge.

With his “New methods of celestial mechanics” and “Analysis
situs” (topology) Poincaré (38) started a new, qualitative, mathe-
matics, about whose applications to celestial mechanics we can
say only a few words here.

It turned out that, depending on the initial conditions, motion
in a system of three or more bodies is sometimes regular and
sometimes chaotic. An example of a regular motion is the
planetary motion in an evolving Kepler ellipse, slowly and slightly
changing its eccentricity in the course of infinite time and slowly
rotating under the action of perturbations, always remaining in a
plane that slightly rocks about an unchanging position, as La-
place’s approximate theorem predicts.

An example of chaotic motion is the motion of an asteroid
close to aKirkwood gap (J. Wisdom, A.I. Neustadst, J. L. Tennyson,
J-R. Cary, D.F. Escande (39)) - a resonance interaction with
Jupiter leads to “random”, chaotic changes in the eccentricity on
one side or the other. Successive “jumps” in the eccentricity are
weakly dependent. According to the laws of probability theory a
chaotically varying eccentricity becomes large, and then the
asteroid could, for example, land on Mars. It is suggested that
such a mechnism of “casting out” asteroids from the Kirkwood
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Fig. 26.
Regular and chaotic orbits
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gaps has led during hundreds of millions of years to the forma-
tion of the gaps (Wisdom (39)). The orbit of Halley’s comet varies
chaotically (B.V. Chirikov and V.V. Vyacheslavov (40)). The mo-
tion of Pluto is chaotic too, according to Wisdom, 1989 (oral
report).

The initial conditions of regular and chaotic motions alternate
(Fig.26) like rational and irrational numbers (with the difference
that the probabilities of both regular and chaotic behaviour are
positive, but the probability that a randomly chosen number is
rational is zero). Thus, even if the motion of a planet or an
asteroid is regular, an arbitrarily small perturbation of the initial
state is sufficient to make it chaotic. Fortunately, however, the rate
of development of these chaotic perturbations is extremely small,
so the time for which chaos manifests itself under a sufficiently
small perturbation of the initial state is large in comparison with
the time of existence of the solar system (N.N. Nekhoroshev
(41)). So for the next billion years the main part of the solar
system will hardly change essentially and the “clock mechanism”
described by Newton will continue in good working order.
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CHAPTER 5.
KEPLER’S SECOND LAW AND
THE TOPOLOGY OF ABELIAN
INTEGRALS

§25. Newton’s theorem on the transcendence of integrals

In the Principia there are two purely mathematical pages contain-
ing an astonishingly modern topological proof of a remarkable
theorem on the transcendence of Abelian integrals (42).

Hidden among research into celestial mechanics, this
theorem of Newton has hardly been drawn to the attention of
mathematicians. This is possibly because Newton’s topological
arguments outstripped the level of the science of his time by
two hundred years. Newton’s proof is essentially based on the
investigation of a certain equivalent of the Riemann surfaces of
algebraic curves, so it is incomprehensible both from the
viewpoint of his contemporaries and also for those twentieth
century mathematicians brought up on set theory and the
theory of functions of a real variable who are afraid of mult-
valued functions. Furthermore, Newton was very brief and did
not explain many facts that were obvious to him but only
entered general mathematical practice later. In addition,
having proved a theorem he finally mentioned counterex-
amples to it that were known to him.

A curve in the plane is said to be algebraic if it satisfies an
equation P(x, y) = 0, where P is a non-zero polynomial. For
example, the circle 22 + y* =1 is an algebraic curve. Other ex-
amples of algebraic curves are ellipses, hyperbolas, and the (non-
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Fig. 27. Av=@?-2%/2

The Huygens lemniscate — the

algebraic curve y? = x2 - x* — the \\/ \/
energy level curve on the phase —————m e L
plane of a particle moving in the >

force field of two symmetric

potential wells yz_ 22-24 N

\ A

Bernoulli) lemniscate y? = &2 - ¥* (Fig.27). The sinusoid is not an
algebraic curve (why not?).

A function is said to be algebraic if its graph is an algebraic
curve. For example, y=1 V1 - 2 is a two-valued algebraic func-
tion.

Let us consider an algebraic oval (a closed convex algebraic
curve).

DEFINITION. An oval is said to be algebraically integrable if the
area of a segment of it can be
expressed algebraically. 1

In other words, the area S of
the segment cut off by a line ax +
by = ¢ (Fig.28) must be an alge-
braic function of the line, that is,
it must satisfy an algebraic equa-
tion P(S; a, b, ¢) = 0, where Pisa

) Fig. 28.
non-zero polynomial. The area S as a function of
REMARK. If an oval is alge- (a, b, c) is non-algebraic

braically integrable, then the
.area of the sector cut out from it by an angle with vertex lying
inside the oval is an algebraic function of the lines forming the
angle. This is because the area of the triangle, which is the
difference between the sector and the segment, is algebraic
(for details see §29 below).
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Newton set himself the task of finding all algebraically in-
tegrable ovals. Here is his result.

THEOREM. Every algebraically integrable oval has singular poinis:
all smooth ovals are algebraically non-integrable.

Example. An ellipse is algebraically non-integrable. Hence it
follows that Kepler’s equation, which determines the position of
aplanet on the Kepler ellipse as a function of time (in accordance
with Kepler’s second law, according to which the area swept out
by the radius vector is proportional to the time), is transcendental
and cannot be solved in algebraic functions.

This example led Newton to his general theorem. It is a
surprising theorem, because at first glance there is no obvious
connection between algebraic integrability and singular points.

REMARK. In modern notation Kepler’s equation has the form
x-esin x=¢. This equation plays an important part in the history
of mathematics. From the time of Newton the solution x has been
sought in the form of a series in powers of the eccentricity e. The
series converges when |¢] <0.662743...

The investigation of the origin of this mysterious constant led
Cauchy to the creation of complex analysis.

Such fundamental mathematical concepts and results as Bes-
sel functions, Fourier series, the topological index of a vector
field, and the “principle of the argument” of the theory of func-
tions of a complex variable also first appeared in the investigation
of Kepler’s equation.

Proof of Newton’s Theorem. We choose
a point 0 inside an oval and rotate a ray
issuing from it. If the oval is algebrai-
cally integrable, then the area swept out
by the radius vector of a point of the
oval (Fig.29) must be an algebraic func-
tion of the tangent ¢ of the angle of

Fig. 29.
The area swept out by the
radius vector as a function
inclination of the ray to the a-axis. of tis not algebraic
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Let us force the ray to run round the oval again and again.
On each circuit the area swept out will be increased by
the whole value of the area bounded by the oval. Con-
sequently, the area swept out, regarded as a multivalued func-
tion of #, has infinitely many different values for the same
position of the ray.

But an algebraic function cannot be infinitely multivalued,
since the number of roots of a non—zero polynomial cannot
exceed its degree.

Consequently, the area swept out is not an algebraic function,
and so the oval is not algebraically integrable.

Newton remarked that this argument proves that the length of
an arc of an oval is not algebraic.

§26. Local and global algebraicity

Thus, are algebraically integrable ovals non-existent? No, Newton
already knew examples of ovals for which the areas of segments
are expressed algebraically, and he recalled them in the discus-
sion of his theorem in the Principia.

The simplest example is the oval of

Fig.30, y? = &® - #%. Let ¢ denote the y
tangent of the angle of inclination of '
the secant, y=ix. Then £ =1 - x, so we ¢
obtain a parametric representation of z
the oval,

x=1~-12,

y=t— 15, yi=2t-z?

From this representation it is ob- Alocalll;ifl'ggeol;raically

vious that the integral for the area|y dx integrable oval with one
is a polynomial in & Therefore the singular (nodal) point
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area of any segment cut off from this oval
by aline can be calculated algebraically.
Although the oval thus constructed is
not smooth, Newton’s arguments can be
applied to it. It shows that the area swept
out by the radius vector cannot be ex-
pressed as a whole by one algebraic func-
tion. In fact, each time the ray passes

through the singular (nodal) point of the LI I
oval the algebraic function that expresses Fig.31.
The graph of a locally

the area swept out jumps to a newalgebraic
function.

The preceding example shows that a
function can be locally algebraic, even though it is not algebraic
as a whole (Fig.31). In this sense our oval can be called locally
algebraically integrable.

In practice local algebraic integrability is almost as useful as the
genuine global algebraic integrability. Therefore Newton natu-
rally asked the following question: can a smooth algebraic oval be lo-
cally algebraically integrable? In other words, can the area S of the
segment cut off by the line ax + &y = ¢be an algebraic function of
(a, b, ¢) inaneighbourhood of every point?

In order to construct (by the method of
Fig.30) a locally algebraically integrable
oval that has a tangent everywhere, it is
sufficient to choose a suitable pair of poly-
nomials. For example, the polynomials
x=(£-1)% y= £ - tgive the oval of Fig. 32,
which even has continuous curvature
(why?). We have thus obtained an oval
which looks like a completely smooth

algebraic but not alge-
braic function

curve, that is, locally algebraically in- Fig. 32.

.. e . A locally algebraically in-
tegrable (global algebraic integrability is 11 o con
excluded here by Newton’s argument). tinuous curvature
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PROBLEM. Construct a (locally) algebraically integrable
oval with one singular point which in a neighbourhood of the
singular point is the graph of a function having 1989 continu-
ous derivatives (and in the neighbourhoods of the remaining
points it coincides with the graphs of infinitely differentiable
functions).

§27. Newton’s theorem on local non-algebraicity

Thus, a locally algebraically integrable oval can have arbitrarily
large finite smoothness (it can be defined everywhere by func-
tions with arbitrarily many derivatives). However, in all our ex-
amples there is a singular point on the oval where a derivative of
some order is discontinuous.

Newton only regarded as a truly smooth curve one which in
the neighbourhood of every point is the graph of a function that
can be expanded in a convergent* power series

y=ax+ a4+ axd + ...

(where the origin is chosen at the point concerned). Such curves
are now called analytic.

REMARK. The difference in the behaviour of curves of differ-
ent finite smoothness was well known to Newton and discussed in
the Principia, and the expansion of all algebraic and elementary
functions in rapidly convergent power series was one of his main
mathematical achievements.

From the theorem of §25 Newton derived a much more
powerful assertion.

THEOREM. No analytic ovalis algebraically integrable, even locally.

*  The convergence of the series is not essential for the proof of non-integrabil-
ity, which works as well in the case where the series are asymptotic.
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Proof of local algebraic non-integrability of analytic ovals: If an oval
were locally but not globally algebraically integrable, then
the area swept out would be expressed by one algebraic func-
tion on one side of some point of it and by another algebraic
function on the other side. But for an analytic oval the area swept
out depends analytically on the direction of the ray. Therefore
both these algebraic functions could be expanded in a neigh-
bourhood of this point of the analytic oval in the same convergent
power series. Hence both these algebraic functions would coin-
cide in a neighbourhood of the point. But then they would
coincide everywhere (this follows from the fact that a polynomial
that is not identically zero cannot have more roots than its
degree).

Thus, if a locally algebraically integrable analytic oval were to
exist, then it would be algebraically integrable globally. But since
this is impossible (§25), an analytic oval cannot be algebraically
integrable even locally.

§28. Analyticity of smooth algebraic curves

A curve is said to be infinitely smooth if it is locally the graph of
a function that is differentiable arbitrarily many times.
THEOREM. An infinitely smooth algebraic curve is analytic.
This fact was known to Newton, since he was able to describe the
equation ofany “branch”ofanalgebraic curveinaneighbourhood
of any point of it in the form of arapidly convergent series

Y= ax "+ @+ asd + L
where the origin is placed at the point in question).
g P P q
[Newton stated the theorem on convergence of this series

thus: “The further this result is developed for sufficiently small x,
the more it approaches the true value of y, so the difference
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between it and the exact value of y can eventually be made less
than any given quantity” (43).

The series is constructed by means of the Newton polygon; see
§8].

Each term of the series with a fractional index has only a
bounded number of derivatives. If there is at least one such term
with fractional index in the series, then the curve defined by the
series cannot be infinitely smooth in a neighbourhood of the
point in question.

For an infinitely smooth algebraic curve there are therefore
only terms of integral degree in the expansion, and this means
that the curve is analytic.

COROLLARY. No infinitely smooth algebraic oval is algebraically
integrable, even locally.

Thus, an infinitely smooth closed convex curve cannot be
even locally algebraically integrable if it is algebraic. Is it possible
that non-locally algebraically integrable curves can be found
among non-algebraic ovals?

§29. Algebraicity of locally algebraically integrable ovals

A smooth non-algebraic oval is algebraically non-integrable. This
follows from what we proved above, since the following theorem
is true.

THEOREM. Any locally algebraically integrable oval is algebraic.

Newton used this as an obvious fact. Apparently he argued as
follows.

LEMMA. The envelope of any algebraic family of lines is algebraic.

In other words, if the set of tangents to a curve satisfies an
algebraic equation, then the curve itself is algebraic.

Proof of the lemma. Let us consider two neighbouring tangents
such that the tangents of their inclinations to the xaxis are tand
t+ h (Fig.33).
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Their point of intersection de-
scribes an algebraic curve as ¢ varies
with % fixed (the hatched curve in
Fig.33). The degree of this curve (that
is, the degree of the polynomial that
defines it) is bounded by a constant
independent of h. (This follows from
the fact that the condition of compati-
bility of two algebraic equations is ex-

pressed as the vanishing of a polyno- Fig. 33.

wal in thei fRicient fact dis- The envelope of an alge-
mial in their coefficients — a fact dis- . ey of lines is alge-
cussed by Newton in those two pages of braic

the Principia where he explains at the
same time that two algebraic curves of degrees m and n intersect
in at most mn points.)

As h tends to zero the point of intersection of neighbouring
tangents tends to the original curve. Thus, since it is the limit of
algebraic curves of bounded degree, the original curve is also
algebraic.

Proof of the theorem. Tangents to an oval cut off from it segments
of zero area. Therefore the tangents ax + by = ¢ to an algebraically
locally integrable oval satisfy an algebraic equation P(0; 4, b, ¢) =
0 (see §25). By the lemma the oval is algebraic, which proves the
theorem.

§30. Algebraically non-integrable curves with singularities

Thus, all infinitely smooth ovals are algebraically non-integrable
(even locally). Moreover, Newton’s arguments prove the local
algebraic non-integrability of infinitely smooth non-convex
closed non-self-intersecting curves and even many curves with
singularities.

All curves, all of whose singular points are cusps, are locally
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g2=0r-293

Fig. 34.
Locally algebraically non-integrable curves with cusps

algebraically non-integrable, in particular the curves given by the
equations ¥ = #* - #* or ¥ = (1 - «*3 (Fig.34), or curves with
singularities of type y = /4, where ¢is odd, and so on.

Newton remarked that in order to guarantee local algebraic
non-integrability it is sufficient to require that “conjugate
branches of a curve going off to infinity” do not approach the
points of a closed curve. He obviously had in mind examples like
those of Figs. 30 and 32, where there are such “conjugate
branches”.

In fact, the words “going off to infinity” are put there in error;
we need to require that there are no selfintersections. A suffi-
cient condition for a closed curve satisfying an equation P(x, y) =
0 to have no self-intersections is that the polynomial P should
vanish at exactly two points of a circle with centre at any point of
the curve if the radius of the circle is sufficiently small (a more
scientific condition for the absence of self-intersections is the
following: the oval is in one-to-one correspondence with one of
the real connected components of its normalization).

By Newton’s method we can prove the following theorem.

THEOREM. All algebraic curves that are non-self-intersecting in the
given sense are algebraically non-integrable (even locally).
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Onthe other hand, aself-intersecting closed curve can certainly
be locally algebraically integrable (for some reason Newton over-
looked this possibility when he wrote “going off to infinity”). An
example is the (non-Bernoulli) lemniscate = »*- ¥ (Fig. 27):

J.y dx=fxmdx:—— (N1-2)/3

is an algebraic function*.

But even for self-intersecting curves algebraic integrability is a
rarity.

From Newton’s arguments it is clear that the total area
bounded by a self-intersecting closed locally algebraically in-
tegrable curve (taking account of signs) is zero. For example, the
lemniscate is algebraically integrable only because its two loops
give opposite contributions to the total area. If we deform the
lemniscate so that the absolute values of the areas of the loops
become unequal, then it loses the property of being locally
algebraically integrable.

§31. Newton’s proof and modern mathematics

Newton’s theorem may be transferred to hypersurfaces in an
even-dimensional space. In an odd-dimensional space things are
more complicated. For example, in the three-dimensional case

*  This example was mentioned by Huygens in a letter to Leibniz in 1691. See
also H. Brougham and E.J. Routh, Analytical view of Sir Isaac Newton'’s
Principia, London, 1855. Leibniz, in his reply to Huygens, formulated the
problem of transcendence of the areas of the segments cut off from an
algebraic curve, defined by an equation with rational coefficients, by straight
lines with algebraic coefficients (for instance, of the transcendence of the
number T and of logarithms of algebraic numbers). The problem of Leibniz
ismore general than Hilbert’s 7th problem, but unlike the last is still, it seems,
unsolved.
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the value of a spherical segment depends algebraically on the
plane cutting it off (Archimedes’ theorem). I know of no alge-
braically integrable bodies other than ellipsoids in odd-dimen-
sional spaces. As V. A, Vasil’ev showed, if there are any, then they
must be of very special type. The obvious connections between
this question and singularity theory, integral geometry and tomo-
graphy would probably make it possible to solve it.

Today the ideas on which Newton’s proof is based are called
the ideas of analytic continuation and monodromy. They lie at
the foundation of the theory of Riemann surfaces and a number
of branches of modern topology, algebraic geometry and the
theory of differential equations, connected above all with the
name of Poincaré, those branches where analysis merges with
geometry rather than with algebra.

Newton’s forgotten (44) proof of algebraic non-integrability of
ovals was the first “impossibility proof” in the mathematics of the
new era — the prototype of future proofs of insolubility of alge-
braic equations in radicals (Abel) and the insolubility of differen-
tial equations in elementary functions or in quadratures (Liou-
ville), and not without reason did Newton compare it with the
proof of the irrationality of square roots of integer numbers in
the “Elements” of Euclid.

Comparing today the texts of Newton with the comments of
his successors, it is striking how Newton’s original presentation is
more modern, more understandable and richer in ideas than the
translation due to commentators of his geometrical ideas into the
formal language of the calculus of Leibniz.
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APPENDIX 1.
PROOF THAT ORBITS
ARE ELLIPTIC

The proof is based on the next two theorems.

Let us consider an ellipse with centre at the point 0 in the
complex plane.

THEOREM 1. When complex numbers are squared such an ellipse
goes into an ellipse with one focus at the point 0.

For the proofit is convenient to use Zhukouskii ellipses, defined
by the following construction (Fig.35).

Hooke ellipse Newton ellipse

g

3 Zhukovskimap w=z+ zl Bohlin map w?=z?2

vtz
z

Fig. 35.
The ellipses of Hooke and Newton

LEMMA 1. When the point z describes a circle|zl = > 1, the point w
=z + 1/z describes an ellipse with centre 0.

Proof of Lemma 1. Let z= r cos @ + irsin@. Then w = a cos @
+ ibsin @, where a=r+r-!, b=r-r', as required: the semiaxes of
the Zhukovskii ellipse are equal to a and b.

LEMMA 2. The foci of a Zhukouskii ellipse lie at the points +2.

Proof of Lemma 2. &= & - ¥ = 4.

LEMMA 3. When complex numbers are squared a Zhukovskii ellipse
goes into a Zhukouskii ellipse shifted by 2.

95



Proof of Lemma 3. u? = 22 + 1/22 + 2.

Proof of Theorem 1. The square of a Zhukovskii ellipse has 0 as a
focus, since under a shift of 2 the focus -2 goes to 0. Any ellipse with
centre at the point 0 is obtained from a suitable Zhukovskii ellipse
by a dilatation and a rotation. Hence its square has 0 as a focus.

COROLLARY 1. Any ellipse with focus O is the square of a (unique)
ellipse with centre 0.

Proof of Corollary 1. Among Zhukovskii ellipses there are ellipses
with any ratios of semiaxes.

The main feature of the proof of ellipticity of orbits in a gravi-
tational field — the reduction of the motion according to the law of
gravitation to amotion according to Hooke’s law by squaring the
latter motion ~isincluded in the following theorem of Bohlin (45).

THEOREM 2. Suppose that the point w of the complex plane moves
according to Hooke’s law w = -w. We square w and introduce into the
trajectory of the point Z = u? a new time T so that the law of areas is
satisfied. Then Z(t) satisfies the equation of the law of gravitation

a2z __ ez
VAL
2 2
Proof. From the law of areas “U_‘Iiti(ﬁ = const, 2l Zdlrd = const.
dt 12V d w'wld
We ch —= . — =
e choose a1 b Thend‘c L ,
SO
d’z_ 1 df1 _dw®)_ 2 df1 dw
dv?  ww dt\ww dt | ww dt|w dt
_ 2 (1 dwdw  w)_ , a—g- 0 o _ s
ww(wg i dt+ )— 207w (lwl” +lwl)=—4Ew™ w

(lwl? + lwl* = 2F along a trajectory according to the law of
conservation of energy). The theorem is proved; ¢=4FE.
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The ellipticity of motions with negative total energy in the field
of a centre attracting according to the usual law of gravitation
follows from Theorems 1 and 2 and Corollary 1. In fact, Theorem
2 shows that the squares of Hooke ellipses are orbits of motion in
the gravitational field, and Theorem 1 shows that the squares are
themselves ellipses with one focus at the attracting centre, and
finally from Corollary 1 itis obvious that these squares of suitable
Hooke ellipses provide solutions of the equation of the law of
gravitation with any preassigned initial conditions, for which the
total energy at the initial instant is negative. Since the resulting
solutions depend smoothly on the initial conditions, there are no
other solutions with these initial conditions.

REMARK. Some mysterious calculations in the proof of
Bohlin’s theorem possibly become clearer if we slightly general-
ize the result.

THEOREM 3. The trajectories of motion of the point w in the complex
plane in a central gravitational field whose strength is proportional to the
distance from the centre raised to the power a go under the transformation
Z = w® into trajectories of motion in a central field whose strength is
proportional to the distance from the centre raised to the power A if

(a+3)(A+3)=4, o= 9

Thus, for every power law of attraction there is a unique dual
law (Fig.36). For example, the dual of Hooke’s law (a = 1) is the
law of gravitation (A = -2) and conversely. We can derive a
formula connecting dual laws from an expression given by New-
ton for the angle between the pericentres of an almost circular
orbit (46). Self-dual laws correspond to @ = -1 and a = 5. These
cases were also specially singled out in the Principia.

The proof of Theorem 3 repeats the calculation of the proof
of Theorem 2:
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Fig. 36.
Dual laws of attraction

d2w dt
— =—wlwlel, —=lwle*]

dt? dt
dZ
S == CZIZIM, C=2Ea(a-1),

2 lw e+l

9E=lwl2+
a+1

COROLLARY 2. The trajectories of motion in a central field of
attraction whose strength is inversely proportional to the fifth power of the
distance from the centre are rolated by a suitable inversion.

Motion in a field whose strength is inversely proportional to
the fifth power of the distance had already been considered in the
Principia: Newton proved that among the trajectories there are
circles passing through the centre of attraction (47).

COROLLARY 3. All irajectories of motion in the usual gravitational
field after taking the square root turn into trajectories of motion in the
linear central field Z" = —CZ in the complex plane.
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THEOREM 4. All trajectories of motion in the usual gravitational
field are conic sections with one focus at the attracting centre.

Proof of Theorem 4. Corollary 3 is obtained from Theorem 3
when a=-2, .= 1/2. Therefore the signs of Eand C= 2k (o - 1)
are opposite. The trajectories of motion in the linear field are
centrally-symmetric ellipses when C > 0, hyperbolas when €< 0,
and straight lines when C= 0. Squaring the ellipses we obtain the
Kepler ellipses (by Theorem 1).

When squared a hyperbola with centre at 0 goes into half of a
hyperbola with focus at 0. To verify this it is sufficient to consider
a Zhukovskii hyperbola: w= z + 1/z describes such a hyperbola
when z describes a line passing through 0. Zhukovskii hyperbolas
are confocal to Zhukovskii ellipses. When wis squared the focus
—2 is shifted to the origin (as for ellipses).

In addition, the second branch disappears, since 2% describes
not a line but a ray.

The case C = 0 can be obtained by a limiting process. In
addition, it is simpler than those already considered: the line
(t+ ) when squared goes into the parabola (£ -1 + 2if). Its focus
is the point 0, and its directrix is the line (is— 2). This is because

(12-1)2+ 402 = (12 + 1)2.

THEOREM 5. Under motion in any attracting field whose strength
is proportional to the a-th power of the distance from the cenire some
trajectories are images of straight lines under the transformation

2
a+ 3

w:ZB’ ﬁ:é:

EXAMPLE. In the field of the law of universal gravitation these
are parabolic trajectories, B = 2. In a field whose strength is
inversely proportional to the fifth power of the distance from the
centre they are circles passing through the centre = -1.
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Proof. If in the calculation of the proof of Theorem 3 we put
E=0, then #Z/dt? =0, that is, the trajectories Zare straight lines.

REMARK. Let w(z) be any conformal mapping. Then it trans-
forms the trajectories of the motion in the field having potential
U(z) = ldw/dz? into the trajectories of the motion in the field
having the dual potential V(w) = -ldz/ dui®.

The duality of Theorem 3 corresponds to w= 2

Proof. The duality interchanges E and U in the Maupertuis-
Jacobi metrics:

V2 (E- () ldz|=VEN2(E - Vw)) ldw!, EE’= —I.

The duality of Theorem 3 holds also in quantum mechanics (R.
Faure, Sur les transformations conformes en mécanique ondula-
toire, Comptes rendus Ac. des Sci. Paris, 1953). The quantum
duality follows from the evident identity of the quadratic forms

(Vg + (a+ bU2) wed 2z = (V)2 + (b— aVw))y2d 2w.

Of course, similar results hold for any Riemannian kinetic
energy metrics, instead of the Euclidean 1dzl, and even for Finsler
metrics.

Examples. The simplest conformal mappings produce the fol-
lowing pairs of dual potentials:

mapping U |4
w=1/z *ld Flaul
w= & *e2Rez +|wl?
w=sin z +|cos TUN1 Tuw?|
w=tan z *+|sec?zl FU/1=wA

Hence the Mobius transformations, which are the only confor-
mal mappings in higher-dimensional spaces, correspond to the
Newton case a =-b. We see also that the case a=-3, whose dual
is A = oo, corresponds to “2% ~ In z” and “r— ~ %", where ~ means
“is proportional to” in the formal sense.

100

APPENDIX 2.
LEMMA XXVIII OF NEWTON’S
PRINCIPIA

There is no oval figure curve whose area, cut off by right lines at pleasure,
can be universaly found by means of equations of any number of finite
terms and dimensions.

Suppose that within the oval any point is given, about which as
apole arightline is perpetually revolving with an uniform motion,
while in that right line a moveable point going out from the pole
moves always forward with a velocity proportional to the square of
that right line within the oval. By this motion that point will de-
scribe a spiral with infinite circumgyrations. Nowifa portion of the
area of the oval cut out by thatright line could be found by a finite
equation, the distance of the point from the pole, which is propor-
tional to this area, might be found by the same equation, and
therefore all the points of the spiral might be found by a finite
equation also; and therefore the intersection of a right line given
in position with the spiral might also be found bya finite equation.
But every right line infinitely produced cuts a spiral in an infinite
number of points; and the equation by which any intersection of
two lines is found at the same time exhibits all their intersections
by as many roots, and therefore rises to as many dimensions as
there are intersections. Because two circles mutually cut one
another in two points, one of these intersections is not to be found
butby an equation of two dimensions, by which the other intersec-
tion may also be found. Because there may be four intersections of
two conic sections, any one of them is not to be found universally,
but by a an equation of four dimensions, by which they are all
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found together. For if these intersections are severally sought,
because the law and condition of all is the same, the calculus will
be the same in every case, and therefore the conclusion always the
same, which must therefore comprehend all those intersections at
once within itself, and exhibit them all indifferently. Hence it is
that the intersections of the conic sections with the curves of the
third order, because they may amount to six, come out together by
equations of six dimensions; and the intersections of two curves of
the third order, because they may amount to nine, come out to-
gether by equations of nine dimensions. If this did not necessarily
happen, we might reduce all solid to plane problems, and those
higher than solid to solid problems (48). But here I speak of curves
irreducible in power. For if the equation by which a curve is de-
fined may be reduced to a lower power, the curve will not be one
single curve, but composed of two, or more, whose intersections
may be severally found by different calculusses. After the same
manner the two intersections of right lines with the conic sections
come out always by equations of two dimensions; the three inter-
sections of rightlines with the irreducible curves of the third order
by equations of three dimensions; the four intersections of right
lines with the irreducible curves of the fourth order, by equations
of four dimensions, and so on in infinitum. Wherefore the in-
numerable intersections of a right line with a spiral, since this is
but one simple curve, and not reducible to more curves, require
equations infinite in number of dimensions and roots, by which
they may all be exhibited together. For the law and calculus of all
is the same. For if a perpendicular is let fall from the pole upon
that intersecting right line, and that perpendicular together with
the intersecting line revolves about the pole, the intersections of
the spiral will mutually pass the one into the other; and that which
was first or nearest, after one revolution, will be the second; after
two, the third; and so on: nor will the equation in the mean time
be changed but as the magnitudes of those quantities are
changed, by which the position of the intersecting line is deter-
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mined. Wherefore since those quantities after every revolution
return to their first magnitudes, the equation will return to its first
form; and consequently one and the same equation will exhibit all
the intersections, and will therefore have an infinite number of
roots, by which they mayall be exhibited. And therefore the inter-
section of a right line with a spiral cannot be universally found by
any finite equation; and of consequence there is no oval figure
whose area, cut off by right lines at pleasure, can be universally
exhibited by such equation.

By the same argument, if the interval of the pole and point by
which the spiral is described is taken proportional to that part of
the perimeter of the oval which is cut off, it may be proved that
the length of the perimeter cannot be universally exhibited by
any finite equation. But here I speak of ovals that are not touched
by conjugate figures running out in infinitum.

Corollary. Hence the area of an ellipsis, described by a radius
drawn from the focus to the moving body, is not to be found
from the time given by a finite equation; and therefore cannot
be determined by the description of curves geometrically
rational. Those curves 1 call geometrically rational, all the
points whereof may be determined by lengths that are defi-
nable by equations; that is, by the complicated ratios of lengths.
Other curves (such as spirals, quadratrixes, and cycloids) I call
geometrically irrational. For the lengths which are or are not
as number to number (according to the tenth Book of Ele-
ments) are arithmetically rational or irrational. And therefore
I cut off an area of an ellipsis proportional to the time in which
it is described by a curve geometrically irrational, in the follow-
ing manner...”

The phrase about the absence of branches going off to infinity
was inserted by Newton only in the second edition of 1713.
Apparently Newton was unaware of the remarks of Leibniz and
Huygens, who had criticised the text of 1687.
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“I do not think it possible to ascribe this proposition to New-
ton, since he never uses any other property of what he calls an
oval, but that it is a closed curve that closes after one rotation,
which does not even exclude the cases of a square or a triangle”,
wrote Huygens to Leibniz in 1691 (49).

“Newton, in defending the impossibility of quadrature of an
oval, would have replied that such an oval [formed by arcs of two
parabolas] is not genuine and does not consist of one curve de-
scribing it, as his argument apparently requires, because one of
the parabolas does not go into the other when it is extended. But
your curve in the form of a figure eight is really describable, and
his argument can be applied to it, although it is not at all like an
oval, thus, on his argument it cannot be integrable in the general
way [to have algebraic areas of segments]. It would be useful to
consider his argument in order to understand what is deficient in
it. As for a circle or an ellipse, the impossibility of their general
integrability has been proved sufficiently, but I do not see any
proof of non-integrability of the whole circle or any determined
part of it”, wrote Leibniz to Huygens on 10/20 April 1691 (49).

A curve in the form of a figure eight, the (non-Bernoulli)
lemniscate y* = »® - »%, was discussed by Huygens in previous letters.
Thus, the error in both the original and the revised text of
Newton was mentioned by Huygens many years before Newton
undertook corrections.

Phrases about the irreducibility of curves were also inserted
only in the second edition.

In connection with the proof of Bézout’s theorem Newton
referred to the fact that otherwise cubic irrationalities would
reduce to quadratic, and so on, and it could also be said that he
referred to the insolubility of the problem of resolvents or Hil-
bert’s thirteenth problem for algebraic functions (in contrast to
Bézout’s theorem, these assertions in the general case are still
unproved today). In addition, the part of Bézout’s theorem nec-
essary to Newton is obvious.
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It is incomprehensible why Newton dropped a perpendicular
to a moving line: for the proofit is sufficient to restrict oneself to
straight lines passing through the central point, and to begin
reading from there. Apparently Newton for some reason wished
to regard area as a function of a straight line, defined for all lines
(despite the opinion that he avoided functions of several varia-
bles, here he immediately introduces, in the spirit of Radon
transformation, integral geometry or tomography, a function on
a manifold of lines).

The connection between the transcendency of functions and
the transcendency of numbers, to which Leibniz alluded in the
last cited letter to Huygens, is deeper than appears at first sight.
In modern times Leibniz’s conjecture reads: an Abelian integral
along an algebraic curve with rational (algebraic) coefficients
taken between limits which are rational (algebraic) numbers is
generally a transcendental number. Unlike Hilbert’s conjecture
on transcendental numbers, which has been proved by Gelfond,
this conjecture of Leibniz seems to be still unproved.
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NOTES

(1) D. Bennequin, Caustique mystique (d’aprés Arnol’d et al.), Séminaire
Bourbaki 1984/85, Astérisque 133134 (1986), 19-56.
(2) The malicious Voltaire wrote that Newton owed his career “not to infinites-
imal calculus and gravitation but to the beauty of his niece”.
Newton’s favourite niece Catherine Barton, in whose family he lived for the
last twenty years of his life, was celebrated not only for her beauty but also
for her intellect. Newton’s biographers report that for a long time she was
the housekeeper of Newton’s pupil Lord Montague Halifax, a poet and
distinguished stateman, a member of the regency council of England, First
Lord of the Treasury and founder of the Bank of England. After his death
in 1715 Catherine Barton inherited a considerable fortune. Newton owed
his office of Master of the Mint to Lord Halifax. See T.L. More, Isaac
Newton. A biography, Charles Scribner and Sons, New York—London, 1934.
(3) This law is also known as Boyle’s law. Boyle actually first published it in 1660
in his book, but with a reference to Hooke as the author of the law, and he
did not even pretend to co-authorship. See 1. B. Cohen, Newton, Hooke
and “Boyle’s law” discovered by Power and Towneley, Nature 204 (1964),
618-621.
(4) However, in 1781 Lagrange wrote to d’Alembert about modern mathemat-
ics: “...1 also think that the mine has become too deep and sooner or later
it will be necessary to abandon it if new ore-bearing veins shall not be
discovered. Physics and chemistry display now treasures much more brilli-
ant and easily exploitable, thus, apparently, everybody has turned
completely in this direction, and possibly posts in geometry in the Academy
of Sciences will some day be like chairs in Arabic Language in universities
at present”.
Later, in 1694, Newton wrote that he had discovered the law of universal
gravitation in 1665 or 1666. Still later, in 1714, Newton dated his derivation
of the ellipticity of orbits from the inverse square law as 1676 or 1677.
However, neither in correspondence with Hooke in 1679 nor earlier did
Newton recall his discoveries in this field: he did not publish them and did
not speak about them. Newton explained this by the fact that because of
the false value of the radius of the Earth he accepted that the calculated
accelerations of stones and the Moon do not fit the inverse square law with
sufficient accuracy. Hooke’s first publication on the force of gravitation as
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a possible reason for the ellipticity of orbits was his reportread to the Royal
Society in 1666, and published in 1674 as part of a 1670 Kuderian lecture.
1t is not difficult to see that Newton’s argument gives a deviation of
@V2h3 /g ata height h above the equator (gis the acceleration due to gravity,
and o is the angular speed of the Earth). A calculation taking account of
the Coriolis force, which gives two thirds of this deviation, is given, for
example, on p. 131 of the textbook: V. 1. Arnol’d, Mathematical methods of
classical mechanics, Springer-Verlag, New York, 1989.

Huygens considered systems of colliding and diverging balls joined by
strings or rods or rolling in troughs and proved that the centre of gravity of
the system never rises above its initial position if we leave the system alone,
releasing the balls with no initial speed.

If the graphs of non-coincident analytic functions fand g touch the line
y= xat the origin (Fig.37), then the ratios |ABI/IBCl and IBCI/IEDI tend to
one as A tends to the origin. There-

fore the required limit of the ratio g i
|ABI/ID'E’l is equal to one. gy
See. Ch.6, §7.5 of the book: R. A

Courant and D. Hilbert, Methods
of mathematical physics, Vol.2, In-
terscience, New York, 1962. See ¢ 8
also: V.I. Arnol’d, On the New- £ 2,
tonian attraction of concentrations '
of dust particles, Uspekhi Mat. 3
Nauk 37: 4 (1982),.125; V.I. Ar-
nol’d, On the Newtonian potential
of hyperbolic shells, Trudy Thiliss.
Univ. 232-233 (1982), 23-28; A.B.
Givental’, The polynomial property
of electrostatic potentials, Uspekhi Fig,. 37.

Mat. Nauk 395 (1984), 253-954;  Calculation of the limit [ABI/ID'E'l
V. 1. Arnol’d, Magnetic analogues

of the Newton and Ivory theorems,

Uspekhi Mat. Nauk 38:5 (1983), 145-146; A.D. Vainshtein and B.Z.
Shapiro, Multidimensional analogues of the Newton and Ivory theorems,
Functional Anal. Appl. 19 (1985), 17-20.

A family of confocal surfaces of the second order in n-dimensional Eu-
clidean space is defined as a family of surfaces dual to the surfaces of a
FEuclidean pencil of quadrics (A - AEx, x) = 1 with parameter A. When n=2
the confocal “surfaces” are ellipses and hyperbolas with common foci.

R. Weinstock, Dismantling a centuries-old myth: Newton’s Principia and
inverse-square orbits, Amer. J. Phys. 50 (1982), 610-617.

x

)

Y

(11) For example, the equation x = x2/3 has solutions x = 0 and x = /27 with
common initial condition x(0) = 0.

(12) 1. Newton, Methodus fluxionum, Principia, Liber 11, Lemma 2, p. 243.

(13) Before his death Barrow told his friends: “At last I shall know the solutions
of many geometrical and astronomical problems. Oh God, what a geome-
ter!”

(14) A.T. Fomenko, A global chronological map, Khimiya i Zhizn’ 1983, no.9,
85-92.

(15) Swift wrote: “Some of my enemies have industriously whispered about that
one Isaac Newton, an instrument maker... might possibly pretend to vie
with me for fame in future time”.

(16) For infinitesimal calculus see N. Bourbaki, Eléments d’histoire des mathé-
matiques, Hermann, Paris, 1960, pp. 178-220.

(17) For modern mathematicians it is generally difficult to read their predeces-
sors, who wrote: “Bob washed his hands” where they should simply have
said “There is a #; < 0 such that the image Bob(#) of the point # under the
natural mapping ¢~ Bob(#) belongs to the set of people having dirty hands
and a # of the half-open interval (#, 0] such that the image of the point #
under the same mapping belongs to the complement of the set concerned
when the point 4 is considered.”

(18) Oeuvres mathématiques de Leibniz, part I, vol.2, A. Franck, Paris, 1853,
p- 255.

(19) Newton was not anti-religious, but rather a secret Arian, a heretic, who
denied the dogma of the Trinity. According to his biographers he believed
that God could have had other sons, apart from Christ, through whom he
revealed his truth to people, and apparently Newton, being also born on
25 December, seriously believed that he was one of these prophets. An
interpretation of the Apocalypse and the prophecies of Daniel are due to
Newton; in particular, he predicted the fall of the Papal Throne in the year
2000.

(20) A.N. Bogolyubov, Robert Hooke [in Russian], Nauka, Moscow, 1984. On
p- 55 of this book Chladni figures, drawn by accumulation of sand near the
zeros of an eigenfunction of an oscillating horizontal plate (and discovered
by Hooke more than a hundred years before Chladni) are called Lissajou
figures (these have apparently still not been discovered in the works of
Hooke).

(21) O.V. Lyashko, Classification of critical points of functions on a manifold
with a singular boundary, Functional. Anal. Appl. 17 (1983), 187-193; O.P.
Shcherbak, Singularities of a family of evolvents in a neighbourhood of a
point of inflection of a curve, and the group Hj generated by reflections,
Functional Anal. Appl. 17 (1983), 301-303; O.P. Shcherbak, Wave fronts
and reflection groups, Russian Math. Surveys 43:3 (1988), 149-194; A.B.
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Givental’, Singular Lagrangian manifolds and their Lagrangi.arll mapp'%ng.s,

Itogi Nauki i Tekhniki, Sovremennye Problemy Matematiki, Noveishie

Dostizheniya 33 (1988), 556-112 (translated in J. Soviet Mam.). .
(22) The degrees of the invariants are 2, 6 and 10; the invariant of degree 2 is

The construction of the one-dimensional Penrose tiling and a two-dimensional

110

the square of the distance from the origin, and the invariants of degrees 6
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quasicrystal

(23)

(24)

and 10 are obtained from the 12 vertices and 20 faces of the icosahedron
(as products of linear functions equal to +1 at the vertices and the centres
of the faces).

See, for example: D. Schechtman, D. Gratias and J.W. Cahn, Microscopic
evidence for quasi-periodicity in a solid with long-range icosahedral order,
C.R. Acad. Sci. Paris 300 (1985), 909-914; M. Senechal and J. Taylor,
Quasicrystals: The view from Les Houches, Mathem. Intelligencer 12:2
(1990), 54-64.

Another way of seeing the pentagonal symmetry is as follows. Let us
consider a “staircase” consisting of cubes of the ambient space with vertices
at points of the integer lattice that intersect the irrationally disposed
subspace in question. The projection of the boundary of the staircase on
this subspace determines a partition of it into polyhedra of finitely many
types which, however, do not repeat periodically (Plate 4), the so-called
Penrose tiling. Fig. 38 shows a similar tiling of the plane with clear traces of
pentagonal symmetry.

Incidentally, the construction of the staircase provides tilings of the plane
by different rhombi, which cannot be calculated algorithmically (they
cannot be constructed by any computer with a finite program).

In fact, a staircase of cubes in three-dimensional space that intersect an
irrationally disposed plane is an infinite polyhedron with square faces in
three directions that form two bounding polyhedra above and below the
surface — lids. We project the upper lid onto the original irrationally
disposed plane along a diagonal of the cube. Three adjacent faces
of the cube project into three parallelograms affinely equivalent to three
rhombi of the same size having angles of 120" ata common vertex (Fig. 39).

VAN
Fig. 39.
On the construction of an uncomputable Penrose tiling

All the faces of the upper lid project into parallelograms equivalent to these
three parallelograms under parallel displacement, which simply fill the
whole plane. An affine transformation takes all these parallelograms into
rhombi.
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Fig. 40.
Construction of a quasi-periodic Penrose tiling from a Markov
partition of the torus

The direction of the original plane is determined by the resulting tiling.
But there is a continuum of directions, while the set of programs is
countable. Hence some of the resulting tilings (and even almost all of
them) are uncomputable.

The Penrose tilings described above are quasi-periodic. Quasi-periodic
Penrose tilings are obtained from a paritition of a torus into prisms with
bases parallel to the irrational subspace on which the quasi-periodic tiling
is cut.

Such a partition of the two-dimensional torus is shown in Fig. 40 (similar
partitions occur in ergodic theory generating the so-called Markov parti-
tions, studied by Adler, Weiss, and Ya. G. Sinai).

The Penrose tilings constructed above (by means of “staircases”) are also
cut out from partitions of tori into prisms with parallel bases. So the
construction with prisms can be regarded generating a generalization of
the construction with staircases.

A quasi-periodic Penrose tiling is a partition of an irrational subspace into
level sets of a special quasi-periodic function with finitely many values. This
function is obtained by the restriction to the irrational subspace of a
function with finitely many values on a torus, constant on prisms with bases
parallel to the subspace. We call such quasi-periodic functions Penrose
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Fig.41.
A stochastic web

functions. Any continuous function on a torus of any dimensionality can
be approximated arbitrarily closely by a function with finitely many values,
constant on prisms with bases parallel to a given direction (of any dimen-
sionality). Therefore any quasi-periodic function can be approximated
arbitrarily closely by a quasi-periodic Penrose function of the same peri-
odicity (cut out by the same irrational subspace as the original function).
Hence it is clear that the patterns we see when we investigate a quasi-peri-
odic function (its level lines, net of singular points, and so on) must always
recall a Penrose tiling. If the original function has any symmetry, then the
approximating Penrose tiling (constructed by some natural algorithm) will
have the same symmetry.

We thus obtain one more way of generating quasi-crystalline structures: it
is sufficient to start with a quasi-periodic function with the necessary
symmetry and convert it into a tiling by some natural algorithm.

The following example of this kind was discovered by G.M. Zaslavskii,
M. Yu. Zakharov, R.Z. Sagdeev, D. A. Usikov and A. A. Chernikov (A stoch-
astic web and diffusion of particles in a magnetic field, Soviet Physics JETP
64 (1986), 294-303; The generation of ordered structures with an axis of
symmetry from Hamiltonian dynamics, JETP Letters 44 (1986), 451-456)
in the analysis of a resonance interaction of particles with a wave in a plasma
placed in an external magnetic field.
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Let us consider a transformation of the plane into itself given by the
formula T= AB, where A is a rotation through an angle 2np/g, and B(x, 5)
= (x, y+Esin x). A computer experiment shows that for a suitable choice of
the initial point the images of this point under multiple repetition of the
transformation T fill 2 network of thin lines (for small €), a “stochastic web”
with symmetry of order g, which looks from a distance similar to a Penrose
tling (Fig.41 and Plates 2a, 2b, 2c¢).

The explanation is as follows. When € = 0 the mapping TYleaves all points
of the plane fixed. Therefore for small € each point under the action of 7¥
is shifted by a small distance of order €. On the other hand, the mappings
A and B, and hence 7, preserve areas. Therefore the mapping T7 up to
small quantities of order €2 is a transformation in time € in the phase flow
given by some Hamilton function Hby the usual formula

dx 0H dy_dH

dt- 9y dt ox’
Calculations show that the Hamilton function H(x, y) has the form
H=cos tj + ... + cOS Uy,

where oy is a linear function in the plane, equal to the scalar product of the
radius vector of the point (x, y) and the radius vector of the kth vertex of a
regular ¢gon with centre at the origin. This function H is quasi-periodic
and has symmetry of order ¢. (His cut out from a sum of cosines defined
on a gdimensional torus under an embedding a of a two-dimensional
plane in a gdimensional torus in the form of the irrational space of an
irreducible representation of the cyclic group of order ¢.)

The Hamilton function H is the first integral of the system of Hamilton
equations. Therefore on repeating the mapping 7¢a point of the plane will
remain on the same level curve of the function H where the initial point
lies (at least in a first approximation of the theory of perturbations with
respect to €).

Thus, the observable stochastic web is close to the level curve of the
quasi-periodic function H, which has obvious symmetry of order ¢. This
explains the similarity of the web to a quasicrystalline Penrose tiling with
symmetry of order g (see Plate 3). .

A direct study of level curves of the function H generates the same quasi-
crystalline structures in the plane as a repetition of the transformation T
that generates the stochastic web.

A.N. Varchenko and S. V. Chmutov, Finite irreducible groups generated by
reflections are the monodromy groups of appropriate singularities,
Functional Anal. Appl. 18 (1984), 171-183.

(26) Principia, Book 111, p. 504 in Motte’s translation, published by Daniel Adee,
New York, 1846.

(27) Principia, Book II (On the motion of bodies). An exhortation (pp. 428-430
of: Collected works of Academician A.N. Krylov, vol.VII, I. Newton, The
mathematical origin of natural philosophy [in Russian], Akad. Nauk SSSR,
Moscow-Leningrad, 1936). See also pp. 65-78 of: V.M. Tikhomirov, Stories
of maxima and minima [in Russian], Nauka, Moscow, 1986.

(28) See, for example, Ch.1I of Book IV in: P.S. Laplace, Traité de mécanique
celeste, I-V, Paris, 1799-1827.

(29) M.L. Lidov, On the approximate analysis of the evolution of orbits of
artificial satellites, in: Problems of motion of artificial celestial bodies [in
Russian], Akad. Nauk SSSR, Moscow, 1963, pp. 119-134.

(30) See: Tides and resonantces in the Solar System [in Russian], Mir, Moscow,
1975 (translations of: G.].F. Macdonald, Tidal friction, Rev. Geophys. 2
(1964), 467-541; P. Goldreich and S. Soter, Q in the Solar System, Icarus 5
(1966), 375~-389; P. Goldreich, History of the lunar orbit, Rev. Geophys. 4
(1966), 411-439; L.. V. Morrison, The secular accelerations of the Moon’s
orbital motion and the Earth’s rotation, The Moon 5 (1972), 253-264).

(31) See, for example, V. V. Kozloy, Integrability and non-integrability in Hamil-
tonian mechanics, Russian Math. Surveys 38:1 (1983), 1-76.

(32) Nova Comm. Petropol. 11 (1767), 144-151; see also: A. Wintner, The
analytical foundations of celestial mechanics, Princeton Univ. Press, 1941.

(33) J-L. Lagrange, Oeuvres 6 (1772), 272-292.

(34) P.E. El’yasberg and T.A. Timokhova, Control of a spacecraft’s motion in
the vicinity of a collinear libration centre in the restricted elliptical three
body problem, Cosmic Res. 24 (1986), 391-404.

(35) A.N. Simonenko, Asteroids [in Russian], Nauka, Moscow, 1985.

(36) See the photograph at the end of the book: J. Darius, Beyond vision,
Oxford University Press, 1984.

(37) N.N. Gor’kavyi and A.M. Fridman, On the resonance nature of the rings
of Uranus determined by its undiscovered satellites, Letters in the
Astronomical Journal 17 (1985), 717-720.

(38) H. Poincaré, Oeuvres, vols. I-XI, Gauthier-Villars, Paris, 1928-1956;
Collected works, vols. I-1II, Nauka, Moscow, 1971-1974 (with modern
comments in Russian).

(39 A.1. Neishtadt, Change in adiabatic invariant at a separatrix, Soviet
J. Plasma Phys. 12 (1986), 568-573.

J-L. Tennyson, J.R. Cary and D.F. Escande, Change of the adiabatic con-
stant due to separatrix crossing, Phys. Rev. Lett. 56 (1986), 2117-2120.

J. Wisdom, A perturbative treatment of motion near the 3/1 commensura-
bility, Icarus 63 (1985), 272-289.
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(40) V.V. Vyacheslavov and B.V. Chirikov, The chaotic dynamics of Halley’s

(41)

(42)
(43)

(44

(43)
(46)
(47)
(48)

(49)
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comet, Preprint 86-184, Inst. of Nuclear Physics, Novosibirsk, 1986.

N.N. Nekhoroshev, An exponential estimate of the time of stability of
nearly-integrable Hamiltonian systems, Trudy Sem. Petrovsk., 1979, no.5,
5-50.

Lemma XXVIII in the Principia (pp. 101-105 of this book).

See the article: De analysi per aequationes infinitas (On analysis by equa-
tions unlimited in the number of their terms), The mathematical papers of
Isaac Newton, vol. II, Cambridge Univ. Press, 1968, pp. 206-273.

An unconvincing criticism of Newton’s proof was given by M. Vygodskii in a
note on p. 394 of the Russian translation of: H. G. Zeuthen, Geschichte der
Mathematik im XVI und XVII Jahrhundert, Teubner, Leipzig, 1903 (GTTI,
Moscow, 1933).

H.W. Turnbull (The mathematical discoveries of Newton, Blackie and Son,
London-Glasgow, 1945) notes that Newton’s argument “shows distinct
tracesof the ideaswhich found their full expression in the theory of groups of
both Galois and Lie”. The meaning of this phrase, which was drawn to my at-
tentionbyA. P. Yushkevich, isnotentirelyclear: whatare the Liegroups here?
In Zeuthen's book he also discusses a work of Gregory, who proved before
Newton that the trigonometric functionsare transcendental.

K. Bohlin, Bull. Astr. 28 (1911), 144.

Principia, Proposition X.

Principia, Proposition VIL

Newton’s argument is not clear, but he knew “Bézout’s theorem”, accord-
ing to which curves of degrees m and n intersect in at most mn points (or
in a whole component) . He was able to prove this theorem in the following
way. If the equations f{x, ) = 0, g(x, y) =0 (deg f= m, deg g= n) are soluble
for xfor a given y, then the system fu + go =0 of m + nlinear homogeneous
equations in the unknown polynomials u(x) and v(x) of degrees - 1 and
m- 1 has a nonzero solution. Then some polynomial in the coefficients of
the system, called the resultant (or as we now call it, the determinant of the
system) vanishes. Direct calculations show that the degree of the resultant
in yis equal to mn (prove it!). If the resultant is not identically zero, then
the number of its roots y does not exceed mn. The resultant was explicitly
discussed by Newton.

Thus, the set of points of intersection is projected onto the yaxis, and
hence onto any line, into no more than mn points, so it consists of at most
mn points.

Also, Newton uses below only the obvious fact that there are finitely many
points of intersection of an algebraic curve with a straight line (and the fact
that a spiral is irreducible).

Oeuvres mathématiques de Leibniz, part I, vol.2, A. Franck, Paris, 1853,
pp. 90-93.
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Plate 1. Model of the diffraction pattern for a quasicrystal with fivefold sym-

metry. T'he centres of the coloured disks are two-dimensional projections of the
integer points in the hyperplane x; + x9 + x3 + x4 + x5 = 0 in five-dimensional
space. T'he sizes of the disks decrease exponentially with five-dimensional distance
from the origin, and their colours redden with increasing distance from the

projecion plane (see p. 65).



Plate 2a. Stochastic web with five-fold (lll(l\’i('l"\'\l;l”i(' symmetry. Several chaotic

orbits are plotted in blue-green against the gray background of the Hamiltonian

flow with the same symmetry (see p. 114 and Plate 3).



Plate 2b. Enlarged section of the map of Plate 2a. The pretzel-shaped chaotic

region shown in white is isolated from the main web, shown in blue-green, by a

family of invariant curves (see p. 114).



Plate 2c¢. Enlarged section of the chaotic region of Plate 2b. The fine structure

of the chaotic trajectory emerges as well as some islands formed by the quasiperi-

odic “KAM" trajectories (see p. 114).



Plate 3. Hamiltonian flow with five-fold quasicrystallic symmetry. Ranges of

values of the Hamiltonian H (see pp. 112-114) are assigned different colours, and
the boundaries between regions of different colour correspond to phase-space

orbits. Seen from a distance, this web looks like a quasiperiodic Penrose tiling.



Plate 4. Quasiperiodic tiling of a portion of the plane by three parallelograms

coloured yellow, green and blue. The tiling is obtained by slicing through a
three-dimensional cubic lattice with the plane z=ax+by, with a=V3 /2 and b=V2 /2.
The parallelograms are the projections of the cubic faces which intersect the

plane (see p. 111).



