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1. Introduction

In the prequantization construction the Hilbert space consists of all square
integrable sections of the prequantum line bundle (L, π,M), however this con-
struction fails to satisfy the desired completeness condition. Part of the problem
is that quantum states depend on only half the variables of the classical system
yet as constructed the prequantum states depend on all the variables of the clas-
sical system. Polarizations are the geometric object that are used to decrease
the dependency to n variables.

To loosely summarize this idea, given a symplectic manifold (M,ω) of di-
mension 2n we will first choose n directions in M by way of a special distribution
P ∈ TMC called a polarization. Then we say a section of the prequantum line
bundle ψ is polarized if it is constant along all the vector fields ξ of P, so

∇ξψ = 0.

We remark that in general it is not sufficient to take the quantization space to
be the L2 integrable polarized sections, it still must be modified in some way. In
what follows we define polarizations, consider some special kinds, namely real
and Kähler polarizations, and briefly discuss some examples related to geometric
quantization.

2. Definitions

Given a smooth manifold M a distribution D is a subbundle of TM . Ex-
tending this definition to TMC, we are now ready to define polarizations.

Definition [3] Let (M,ω) be a symplectic manifold, then a complex polariza-
tion is a distribution P of TMC satisfying the following conditions

1. P is Lagrangian.

2. If η, ξ are vector fields in P then [η, ξ] is a vector field in P. This will be
abbreviated to [P,P] ⊂ P and we say P is involutive.

3. dim(Px ∩Px ∩TM) is constant for all x ∈M . 1

It is not difficult to check that if P is a polarization then P is also a polar-
ization. The involutivity condition is equivalent to P being integrable by the
Frobenius Criterion.

1In some of the literature this condition is omitted in the initial definitions, although
ultimately it is needed in practice, here we include it as in [3].
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The third condition is sometimes omitted in the defintion, see [2],[4] but it
is usful to include it. For each polarization P we have D = P ∩P ∩TM and
E = P ⊕P ∩TM are subsets of TM . The third condition ensures these are also
distributions of TM . Notice that P ∩P is always involutive however E may not
be. We wish to study the polarizations P when E is involutive.

Definition [3] Given a symplectic manifold (M,ω), a polarization P is strongly
integrable if

1. E is involutive

2. The spaces of integrable manifolds M/D and M/E are differentiable man-
ifolds.

3. The canonical projection πDE : M/D →M/E is a submersion.

What is important is if P is a strongly integrable polarization then there are
local coordinates on M , {x1, . . . , xn−k; y1, . . . , yn−k;u1, . . . , uk; v1, . . . , vk} such
that P is spanned by { ∂

∂xi
}n−ki=1 and { ∂

∂zj
}kj=1 where zk = uk + ivk [4].

We now consider examples of special types of strongly integrable polariza-
tions.

2. Real and Kähler Polarizations

Given a symplectic manifold (M,ω) a polarization P of M is real if P = P.

Proposition 0.1 [3] Let (M,ω) be a symplectic manifold and suppose the po-
larization P is real. Let D = P ∩TM , then D is a Lagrangian distribution of
TM . Conversely, if D is a Lagrangian distribution of TM , then DC is a real
polarization.

In particular there are coordinates {x1, . . . , xn; y1, . . . yn} of M such that P
is spanned by { ∂

∂xi
}ni=1.

A polarization P of a symplectic manifold (M,ω) is pseudo-Kählerian if
P ∩P = 0. For any polarization we can define a Hermitian form on P by

h(u, v) := iω(u, v).

Then Ker(h) = P ∩P, so if P is pseudo-Kählerian then h is non-degenerate. If
h is positive definite on P we say that P is a Kälher polarization [4].

The following proposition explains the name Kähler polarizations. First
recall that a Kähler manifold is a symplectic manifold (M,ω) with a compatible
complex structure J . Then we have distributions of TMC,

T(1,0) = {v ∈ TxMC|Jx(v) = iv} and T(0,1) = {v ∈ TxMC|Jx(v) = −iv}.

Proposition 0.2 Given a symplectic manifold (M,ω) and a complex structure
J , P = T(0,1) and P = T(1,0) are Kähler polarizations. Conversely if (M,ω)
has a Kähler polarization then there exists a compatible complex structure J on
(M,ω).
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Supposing M is 2n-dimensional we know dimT(1,0)x
= dimT(0,1)x

= n. Since
ω is compatible with J if u, v ∈ T(1,0)x

then

ω(u, v) = ω(Ju, Jv) = ω(iu, iv) = −ω(u, v),

so ω(u, v) = 0 and T(1,0) is Lagrangian, similarly for T(0,1). The Newlander-
Nirenberg Theorem says J is integrable if and only if T(1,0) is involutive.

Suppose P is Kähler, then TMC = P ⊕P, so we for all vx ∈ TxM ⊂ TxMC
can write vx = wx+w

′

x where wx ∈ Px and w
′

x ∈ Px. Now we define J : TM →
TM by Jx(vx) = −iwx + iw

′

x. This is compatible with ω.

ω(Jv, Ju) = ω(Jw + Jw′, Jz + Jz′)
= ω(−iw + iw′,−iz + iz′) = ω(−w′ + w,−z + z′)
= ω(−w′,−z) + ω(+w,+z′) + ω(−w′, z′) + ω(w,−z)
= ω(v, u)

The Riemannian metric g(u, v) = ω(u, Jv) is positive definite since the Hermi-
tian form h is. Finally by the definition of J , P = T(1,0), then integrability of J
follows from Newlander-Niremberg and involutivity of P. �

4. Examples

Let us consider two simple examples in relation to geometric quantization.
Take M = T ∗Q, with canonical basis {qi, pj} and standard symplectic form
ω =

∑
dqi ∧ dpi. Take the polarization P to be the span of { ∂

∂pi
}ni=1, ie.

the vertical vector fields. The polarized sections ψ are the sections for which
∂ψ
∂pi

= 0, so those which are constant along the fibers. This is the Schrödinger
representation of (T ∗M,ω). If Q = Rn we could alternatively take P to be
spanned by { ∂

∂qi
}ni=1. Then we would obtain what is called the momentum

representation [3].
For the next example let M = T ∗Q and take the basis zj , zj where zj = pj+

iqj . Then the standard symplectic form becomes ω = 1
2dzj∧dzj and the complex

structure is defined by Jzi = izi, Jzi = −izj . Choosing the Kähler polarization
corresponding to J , ie. P spanned by { ∂

∂zj
}nj=1 the polarized sections must

satisfy ∂φ
∂zj

= 0 so they are the holomorphic sections. This representation is

called the holomorphic or Bargmann-Fock representation. If instead we took P
we would obtain the anti-holomorphic sections [3].
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