POISSON GEOMETRY

DANNY NACKAN

1. INTRODUCTION

This document is intended as a brief introduction to the study of Poisson manifolds, with a focus on their local structure. Following the first half of Weinstein’s paper [3], we discuss the basic properties of Poisson manifolds, state the splitting theorem, and introduce the topic of linearization. Some of our exposition is also based on notes by Fernandes and Mărcuț [1], which provide a more detailed look at this material.

2. BASIC DEFINITIONS AND PROPERTIES

Definition. A Poisson structure on a manifold M is a Lie bracket $\{,\}$ on $C^\infty(M)$ that satisfies the Leibniz property

$$\{fg, h\} = f\{g, h\} + \{f, h\}g$$

for all $f, g, h \in C^\infty(M)$. The pair $(M, \{,\})$ is called a Poisson manifold.

It follows from the Leibniz property and antisymmetry that $\{,\}$ is a derivation in each argument. In particular, for every $h \in C^\infty(M)$, the operator

$$X_h := \{\cdot, h\}$$

is a vector field, called the Hamiltonian vector field generated by h. (Warning: some authors instead define $X_h = \{h, \cdot\}$.)

Lemma 1. For all $f, g \in C^\infty(M)$,

$$X_{\{f, g\}} = [X_g, X_f]$$

(i.e., the map $C^\infty(M) \to \mathfrak{X}(M), f \mapsto X_f$, is a Lie algebra antihomomorphism).

Proof. For any $h \in C^\infty(M)$,

$$X_{\{f, g\}}(h) = \{h, \{f, g\}\}$$

$$= -\{g, \{h, f\}\} - \{f, \{g, h\}\} \quad \text{(Jacobi identity)}$$

$$= \{\{h, f\}, g\} - \{\{h, g\}, f\} \quad \text{(antisymmetry)}$$

$$= X_g(X_f(h)) - X_f(X_g(h)) = [X_g, X_f](h). \quad \square$$

Given a Poisson structure $\{,\}$ on M, there is a corresponding bivector field $\pi \in \mathfrak{X}^2(M) := \Gamma(\Lambda^2 TM)$ such that

$$\pi(df, dg) = \{f, g\}. \quad (1)$$

Viewing π as a map $T^*M \times T^*M \to \mathbb{R}$, we obtain (by contraction) a map $\pi^\sharp : T^*M \to TM$. Note that (according to our sign conventions) we have $\pi^\sharp(dh) = -X_h$ for all $h \in C^\infty(M)$.
Remark. Given an arbitrary bivector field π, the bracket defined by (1) may not satisfy the Jacobi identity. One can show that π defines a Poisson bracket if and only if the Schouten bracket $[\pi, \pi]$ is zero. In this case, we will also refer to π as a Poisson structure.

In local coordinates (x_1, \ldots, x_n) on M, we can write

\[\{f, g\} = \sum_{i,j=1}^{n} \left\{ x_i, x_j \right\} \frac{\partial f}{\partial x_i} \frac{\partial g}{\partial x_j} \]

and

\[\pi = \sum_{i<j} \pi_{ij}(x) \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial x_j}, \quad \text{where} \quad \pi_{ij}(x) = \left\{ x_i, x_j \right\}. \]

Thus the Poisson structure is completely determined by the components $\pi_{ij}(x) = \left\{ x_i, x_j \right\}$.

Example 1 (Classical bracket). Let $M = \mathbb{R}^{2n}$ with coordinates $(q_1, \ldots, q_n, p_1, \ldots, p_n)$. Then

\[\{f, g\} := \sum_{i=1}^{n} \left(\frac{\partial f}{\partial q_i} \frac{\partial g}{\partial p_i} - \frac{\partial g}{\partial q_i} \frac{\partial f}{\partial p_i} \right) \] (2)

is a Poisson structure, corresponding to the bivector field $\pi := \sum_{i=1}^{n} \frac{\partial}{\partial q_i} \wedge \frac{\partial}{\partial p_i}$.

Example 2 (Symplectic manifolds). On any symplectic manifold (M, ω) there is a Poisson bracket such that the corresponding X_f are the usual symplectic Hamiltonian vector fields (i.e., they satisfy $df = \iota_{X_f} \omega$). In local symplectic coordinates $(q_1, \ldots, q_n, p_1, \ldots, p_n)$, this bracket is just given by (2).

3. SYMPLECTIC FOLIATION

Definition. The rank of a Poisson structure π at $x \in M$ is the rank of the (linear) map $\pi^x : T^*_x M \to T_x M$. (In local coordinates, this is given by the rank of the matrix $(\pi_{ij}(x))$.)

Definition. A Poisson structure π on M is called nondegenerate (or symplectic) if its rank is equal to $\dim M$ everywhere.

Remark. Example 2 gives a bijective correspondence between symplectic forms ω and non-degenerate Poisson structures π, justifying the above nomenclature.

Theorem 1. If a Poisson structure π has constant rank on M, then $\text{Image } \pi^x$ is an integrable distribution which gives rise to a foliation of M into symplectic leaves.

Outline. Since π has constant rank, $\text{Image } \pi^x$ is a subbundle of TM, i.e., a distribution. By definition of π^x, this distribution is spanned by Hamiltonian vector fields. Since the bracket of Hamiltonian vector fields is again Hamiltonian (by Lemma 1), we see that $\text{Image } \pi^x$ is involutive, and therefore integrable (by the Frobenius theorem).

Showing that the leaves of the corresponding foliation are symplectic requires the technical notion of an induced Poisson structure; we will omit the details here.

Remark. For a general Poisson structure, one obtains a singular foliation of M into symplectic leaves (i.e., the leaves may have different dimensions).

Example 3. Consider \mathbb{R}^{2n+s} with coordinates $(q_1, \ldots, q_n, p_1, \ldots, p_n, c_1, \ldots, c_s)$, and with the Poisson bracket bracket given by (2). (Thus, functions of (c_1, \ldots, c_s) have zero bracket with all of $C^\infty(M)$.) In this case, the symplectic leaves are the submanifolds on which all of the c_i are constant, i.e., they are copies of \mathbb{R}^{2n}. Clearly \mathbb{R}^{2n+s} is a union of such submanifolds.
4. Splitting

The product of Poisson manifolds can be given a Poisson structure. Suppose M_1 and M_2 have Poisson structures specified in local coordinates by relations $\{x_i, x_j\} = \pi_{ij}^1(x)$ and $\{y_i, y_j\} = \pi_{ij}^2(y)$ respectively. If we additionally specify that $\{x_i, y_j\} = 0$, then these relations together define a Poisson structure on $M_1 \times M_2$.

Theorem 2 (Splitting). Let M be a Poisson manifold, and let $x \in M$. Then there exists a neighbourhood U of x and an isomorphism $\phi = \phi_S \times \phi_P : U \to S \times P$ where

- S is symplectic;
- P is Poisson, with rank 0 at $\phi_p(x)$.

Furthermore, the factors S and P are unique up to local isomorphism.

Remark. One possible representative for the factor S is the symplectic leaf through x.

This theorem reduces the local study of Poisson manifolds to the case where the rank at a point is equal to 0. This case will be studied in further detail in Section 6.

5. Linear Poisson structures

Fix a finite-dimensional Lie algebra \mathfrak{g}. For any $f \in C^\infty(\mathfrak{g}^*)$ and $\mu \in \mathfrak{g}^*$, the differential $df|_\mu$ is an element of $\mathfrak{g}^{**} \cong \mathfrak{g}$. Making this identification, we can define a Poisson structure on \mathfrak{g}^*, called the **Lie-Poisson structure**, by

$$\{f, g\}(\mu) = \langle \mu, [df|_\mu, dg|_\mu] \rangle, \quad f, g \in C^\infty(M)$$

(where $\langle \cdot, \cdot \rangle$ is the pairing of \mathfrak{g}^* with \mathfrak{g}).

We will describe the Lie-Poisson structure in coordinates. Let x_1, \ldots, x_r be a basis for \mathfrak{g}, with corresponding structure constants c_{ij}^k (so that $[x_i, x_j] = \sum_k c_{ij}^k x_k$). Abusing notation, we can also view the x_i as coordinates on \mathfrak{g}^* (via the identification of \mathfrak{g}^{**} with \mathfrak{g}). Then the components of the Lie-Poisson structure are just the linear functions

$$\{x_i, x_j\} = \sum_k c_{ij}^k x_k.$$

The following fact is worth mentioning, although we will not use it later.

Fact. The symplectic leaves in \mathfrak{g}^* are the coadjoint orbits.

6. Linear approximation

Let M be a manifold with Poisson structure π. Suppose that π has rank 0 at a point $p \in M$. We will show that we can provide $T_p M$ with a Lie-Poisson structure.

First note that

$$T^*_p M \cong \mathfrak{m}^2_p / \mathfrak{m}_p,$$

where $\mathfrak{m}_p \subseteq C^\infty(M)$ is the ideal of functions vanishing at p.

Claim. \mathfrak{m}^2_p is a Lie ideal of \mathfrak{m}_p.

Proof. Let $f, g, h \in \mathfrak{m}_p$, and write

$$\{f, gh\} = \{f, g\} h + g \{f, h\}.$$

The brackets $\{f, g\}$ and $\{f, h\}$ belong to \mathfrak{m}_p (i.e., vanish at p) since the rank of the Poisson structure at p is 0. Hence $\{f, gh\} \in \mathfrak{m}^2_p$. \(\square\)
Therefore $\mathfrak{g}_p := T^*_p M$ is a Lie algebra, which means that $\mathfrak{g}_p^* = T_p M$ can be given the Lie-Poisson structure. We call this the **linear approximation** to the Poisson structure at p.

The linear approximation has a simple description in coordinates. Suppose x_1, \ldots, x_r are coordinates on M which vanish at p. Since $\pi_{ij} = \{x_i, x_j\}$ vanishes at 0 for all i,j, we can write the Taylor expansion

$$
\pi_{ij}(x) = \sum_k c^k_{ij} x_k + O(x^2), \quad \text{where } c^k_{ij} := \frac{\partial \pi_{ij}}{\partial x_k}(0).
$$

Then the c^k_{ij} are the structure constants of \mathfrak{g}_p (as the notation suggests), and the components of the linear approximation Poisson structure are just given by

$$
\sum_k c^k_{ij} x_k
$$

(i.e., by removing the higher order terms).

7. Linearization

The notion of linear approximation leads to the question of linearization: When is the linear approximation at a point isomorphic to the original Poisson structure? The following example shows that this is not always the case.

Example 4. One can define a nontrivial Poisson structure on \mathbb{R}^3 by

$$
\{x_1, x_2\} = |x|^2 x_3
$$

$$
\{x_2, x_3\} = |x|^2 x_1
$$

$$
\{x_3, x_1\} = |x|^2 x_2,
$$

but the linear approximation to this structure at the origin is trivial (i.e., the zero bracket).

Definition. A Lie algebra \mathfrak{g} is said to be formally/analytically/C\(^\infty\) nondegenerate if any Poisson manifold whose linear approximation at a point p is isomorphic to \mathfrak{g}^* is itself isomorphic to \mathfrak{g}^* at p, via a formal/analytic/C\(^\infty\) local isomorphism.

The classification of nondegenerate Lie algebras is a difficult problem, but certain results are known. For instance, Weinstein proves (in Theorem 6.1 of [3]) that any semisimple Lie algebra is formally nondegenerate. A more recent survey of the linearization problem can be found in [2].

References

1. Rui Loja Fernandes and Ioan Marcut, *Lectures on Poisson geometry*.