APM 346: Problem set 2

Due Monday Oct 13,2003.

- 1. Solve Laplace's equation inside the rectangle $0 \leq x \leq L, 0 \leq y \leq H$, with the following boundary conditions
(a) $\frac{\partial u}{\partial x}(0, y)=0, \frac{\partial u}{\partial x}(L, y)=0, u(x, 0)=0, u(x, H)=f(x)$
(b) $\frac{\partial u}{\partial x}(0, y)=0, \frac{\partial u}{\partial x}(L, y)=g(y), u(x, 0)=0, u(x, H)=0$
(c) $\frac{\partial u}{\partial x}(0, y)=0, \frac{\partial u}{\partial x}(L, y)=g(y), u(x, 0)=0, u(x, H)=0$
(d) $u(0, y)=0, u(L, y)=0, u(x, 0)-\frac{\partial u}{\partial y}(x, 0)=0, u(x, H)=f(x)$
- 2. Solve Laplace's equation outside a circular disk of radius R subject to the boundary conditions $u(R, \theta)=\ln 2+4 \cos \theta$. Assume that $u(r, \theta)$ remains finite as $r \rightarrow \infty$. What is the solution for $u(r, \theta)=f(\theta)$ for an arbitrary function $f(\theta)$?
- 3. Solve Laplace's equation inside the quarter circle of radius $R=1$ with $0 \leq \theta \leq \frac{1}{2} \pi$ for the following boundary values:
(a) $\frac{\partial u}{\partial \theta}(r, 0)=0, u\left(r, \frac{1}{2} \pi\right)=0, u(1, \theta)=f(\theta)$.
(b) $\frac{\partial u}{\partial \theta}(r, 0)=0, \frac{\partial u}{\partial \theta}\left(r, \frac{1}{2} \pi\right)=0, u(1, \theta)=f(\theta)$.
- 4. Solve Laplace's equation inside a circular annulus $(a<r<b)$ subject to the boundary conditions
(a) $u(a, \theta)=f(\theta), u(b, \theta)=g(\theta)$.
(b) $u(a, \theta)=0, u(b, \theta)=g(\theta)$.
(c) $\frac{\partial u}{\partial r}(a, \theta)=f(\theta), \frac{\partial u}{\partial r}(b, \theta)=g(\theta)$
- 5. Write the Fourier series in the interval $(-\pi, \pi)$ for the following functions:
(a) $f(x)=x$ when $-\pi<x<\pi$. What is the sum of the series when $x= \pm \pi$?
(b) $f(x)=-\pi$ when $\pi<x<0$, and $f(x)=0$ when $0<x<\pi$. What is the sum of the series equal to when $x=0$?
- 6. Write the Fourier series in the interval $(-\pi<x<\pi)$ for the following functions
(a) $f(x)=\exp x$
(b) $f(x)=\sinh x$

