APM 346: Problem set 2 Due Monday Oct 13,2003.

- 1. Solve Laplace's equation inside the rectangle $0 \le x \le L, 0 \le y \le H$, with the following boundary conditions
 - $\begin{aligned} \text{(a)} \ &\frac{\partial u}{\partial x}(0,y) = 0, \\ &\frac{\partial u}{\partial x}(L,y) = 0, \\ &u(x,0) = 0, \\ &u(x,H) = f(x) \end{aligned}$ $\begin{aligned} \text{(b)} \ &\frac{\partial u}{\partial x}(0,y) = 0, \\ &\frac{\partial u}{\partial x}(L,y) = g(y), \\ &u(x,0) = 0, \\ &u(x,H) = 0 \end{aligned}$ $\begin{aligned} \text{(c)} \ &\frac{\partial u}{\partial x}(0,y) = 0, \\ &\frac{\partial u}{\partial x}(L,y) = g(y), \\ &u(x,0) = 0, \\ &u(x,H) = 0 \end{aligned}$ $\end{aligned}$ $\begin{aligned} \text{(d)} \ &u(0,y) = 0, \\ &u(L,y) = 0, \\ &u(x,0) \frac{\partial u}{\partial y}(x,0) = 0, \\ &u(x,H) = f(x) \end{aligned}$
- 2. Solve Laplace's equation outside a circular disk of radius R subject to the boundary conditions $u(R, \theta) = \ln 2 + 4 \cos \theta$. Assume that $u(r, \theta)$ remains finite as $r \to \infty$. What is the solution for $u(r, \theta) = f(\theta)$ for an arbitrary function $f(\theta)$?
- 3. Solve Laplace's equation inside the quarter circle of radius R = 1 with $0 \le \theta \le \frac{1}{2}\pi$ for the following boundary values:
 - (a) $\frac{\partial u}{\partial \theta}(r,0) = 0$, $u(r, \frac{1}{2}\pi) = 0$, $u(1,\theta) = f(\theta)$.
 - (b) $\frac{\partial u}{\partial \theta}(r,0) = 0$, $\frac{\partial u}{\partial \theta}(r,\frac{1}{2}\pi) = 0$, $u(1,\theta) = f(\theta)$.
- 4. Solve Laplace's equation inside a circular annulus (a < r < b) subject to the boundary conditions
 - (a) $u(a, \theta) = f(\theta), u(b, \theta) = g(\theta).$
 - (b) $u(a, \theta) = 0, u(b, \theta) = g(\theta).$
 - (c) $\frac{\partial u}{\partial r}(a,\theta) = f(\theta), \frac{\partial u}{\partial r}(b,\theta) = g(\theta)$
- 5. Write the Fourier series in the interval $(-\pi, \pi)$ for the following functions:
 - (a) f(x) = x when $-\pi < x < \pi$. What is the sum of the series when $x = \pm \pi$?

(b) $f(x) = -\pi$ when $\pi < x < 0$, and f(x) = 0 when $0 < x < \pi$. What is the sum of the series equal to when x = 0?

- 6. Write the Fourier series in the interval $(-\pi < x < \pi)$ for the following functions
 - (a) $f(x) = \exp x$
 - (b) $f(x) = \sinh x$