Recall some definitions. Let G be a group.

- Given $g \in G$, the centralizer of g in G is the subgroup $C_G(g) := \{ a \in G \mid ag = ga \}$.
- Given $S \subseteq G$, the centralizer and the normalizer of S are the subgroups $C_G(S) := \{ a \in G \mid ag = ga \ \forall g \in S \}$ and $N_G(S) := \{ a \in G \mid aSa^{-1} = S \}$.
- Two elements $g, h \in G$ are conjugate when there exists $a \in G$ such that $h = a ga^{-1}$. The conjugacy class of g in G is the set $K_G(g) := \{ a ga^{-1} \mid a \in G \}$.
- Two subsets $S, T \subseteq G$ are conjugate when there exists $a \in G$ such that $T = gSg^{-1}$.

Centers and centralizers

1. Given $S \subseteq G$, what is the relation between S, $C_G(S)$, and $N_G(S)$? In other words: which ones are contained in which ones? What if $S \leq G$?

2. What is the relation between the cardinalities of the conjugacy class of an element and its centralizer? *Hint:* Use the Orbit-Stabilizer theorem.

3. What is the size of the conjugacy class of 3-cycles in S_5? What is the size of the centralizer of a 3-cycle in S_5? Find all the elements in the centralizer of a 3-cycle in S_5. Generalize your answer to k-cycle in S_n.

4. Let $S \subseteq G$. What is the relation between the number of conjugates of S and the order of its centralizer/normalizer?

5. Complete the sentence: “The centre of a group $Z(G)$ is the set of elements whose conjugacy class has cardinality ...”

6. Complete the statement of *the Class Equation* and prove it:

 Theorem. Let G be a finite group and let g_1, \ldots, g_r be [\ldots] Then

 $$|G| = |Z(G)| + \sum_{i=1}^r |G : C_G(g_i)|$$
A lemma

7. Prove or disprove:

(a) Let G be a group. If $G/Z(G)$ is abelian, then G is abelian.
(b) Let G be a group. If $G/Z(G)$ is cyclic, then G is cyclic.
(c) Let G be a group. If $G/Z(G)$ is cyclic, then G is abelian.

p-groups

Definition. Let p be a prime. A p-group is a group whose order is a power of p.

8. Prove that every p-group has non-trivial centre. (This means, the centre is not just the identity.)

9. Prove that every group of order p^2 is abelian.

10. Classify the groups of order p^2 up to isomorphism.