1. For any positive integer n, let L_n be the splitting field of $X^n - 2$ over \mathbb{Q}.

(a) Prove that $L_n = \mathbb{Q}(\sqrt[2n]{2}, \zeta_n)$, where $\zeta_n = e^{2\pi i/n}$. Prove that $|L_n : \mathbb{Q}| \leq n\varphi(n)$, where φ is the Euler function.

(b) Find one value of n for which $|L_n : \mathbb{Q}| \neq n\varphi(n)$.

(c) Let p be a prime. Prove that $|L_p : \mathbb{Q}| = p(p - 1)$.

(d) Prove that Gal(L_p/\mathbb{Q}) is isomorphic to the holomorph of a cyclic group of order p. (For the definition of the holomorph of a group, see Example 5 on page 179 of the book.)

2. Recall that a field extension K/F is 2-filtered when there are subextensions $F = K_0 \subseteq K_1 \subseteq \ldots \subseteq K_n = K$ such that $|K_i : K_{i-1}| = 2$ for all i.

Let $z \in \mathbb{C}$. Consider the following three statements:

(i) The point z is constructible with straightedge and compass starting from the points 0 and 1 in \mathbb{C}.

(ii) There is a 2-filtered field extension K/\mathbb{Q} such that $z \in K$.

(iii) The field extension $\mathbb{Q}(z)/\mathbb{Q}$ is 2-filtered.

We have proven in class that $(i) \iff (ii)$. Clearly $(iii) \implies (ii)$. The goal of this problem is to prove that $(ii) \implies (iii)$.

(a) Let $\mathbb{Q} \subseteq M \subseteq L$ be field extensions and assume that L/\mathbb{Q} is 2-filtered and normal. Prove that M/\mathbb{Q} is 2-filtered.

Hint: Use the Fundamental Theorem of Galois Theory to translate this question into a problem about group theory. Then realize that you need to prove a lemma about groups. Do so. (Note: once you have translated the question into a problem about groups, you still have quite a bit of work to do. It will help to remember what you know about the centre of a 2-group.)

(b) Prove that the normal closure of a 2-filtered field extension is 2-filtered.

Hint: From my notes, use Propositions 3.8 (every field extension of order 2 is obtained by “adding a square root”) and 5.16 (the normal closure of a field extension is the composite of finitely many isomorphic copies of it).
(c) Prove that \((ii) \implies (iii)\) in the above statements.

3. Derive completely an expression for \(\cos \frac{2\pi}{17}\) in terms of rational numbers, square roots, and the field operations. (This expression appears on page 602 of the book, and the process is outlined.)