MAT347Y1 HW16 Marking Scheme
Friday, March 4

Total: 38 points.

#1: 18 points; 3 per part. One small caution: being able to construct an angle \(\theta \) does NOT mean that \(\theta \) is a constructible number. For instance, the angle \(\pi/4 \) is easy to construct, but \(\pi/4 \) is definitely not a constructible number.

#2: 5 points. A few things to note:
- \(|Gal(\mathbb{Q}(\zeta_p)/\mathbb{Q})| = p - 1 \) (not \(p \)).
- Don’t forget your group theory - what do you need to do to show that two groups are isomorphic?

#3: 15 points; 3 per part.
Part (d) caused a lot of people trouble. Here’s an outline of one way to do it:
- Let \(\phi \) be in the Galois group, and suppose \(\phi(X) = \frac{P(X)}{Q(X)} \) for some rational function in \(\mathbb{C}(X) \). Then for all \(r(X) \in \mathbb{C}(X) \), we have \(\phi(r(X)) = r \left(\frac{P(X)}{Q(X)} \right) \in \mathbb{C} \left(\frac{P(X)}{Q(X)} \right) \) (Why? Write out \(r(X) \) and use the fact that \(\phi \) is a field homomorphism fixing \(\mathbb{C} \))
- We want \(\phi \) to be surjective, so when is \(\mathbb{C} \left(\frac{P(X)}{Q(X)} \right) = \mathbb{C}(X) \)? (Use the hint)
- The conditions on \(P(X) \) and \(Q(X) \) from the hint can be turned into another equivalent condition, that a certain determinant is nonzero.