1. Let $V, \langle \cdot, \cdot \rangle$ be an inner product space. Let $W \subset V$ be a subspace.

 (a) Give the definition of W^\perp, the orthogonal complement of W.

 (b) Suppose that $W^\perp = V$. Prove that $W = \{0\}$.
2. Consider \mathbb{R}^3 with the usual inner product. Let W be the span of $(1, 0, 0)$ and $(1, 1, 1)$.

 (a) Perform the Gram-Schmidt process to these vectors to find an orthonormal basis for W.

 (b) Find the orthogonal projection of $(0, 0, 1)$ onto W.
3. Let V be a real inner product space.

(a) Given the definition of a self-adjoint linear operator on V.

(b) Suppose that a linear operator $T : V \to V$ is orthogonally diagonalizable (i.e. there exists an orthonormal basis for V consisting of eigenvectors for T). Show that T is self-adjoint.
4. Let V be an inner product space.

(a) Give an example of a linear operator $T : V \to V$ such that $\text{null}(T) \neq \text{null}(T^*)$.

(b) Show that it is not possible to find an example when T is normal.

(c) Show that for any linear operator $T : V \to V$, $\dim \text{null}(T) = \dim \text{null}(T^*)$.

5. Let \(V, \langle \cdot, \cdot \rangle \) be an inner product space and let \(T : V \to V \) be a linear operator. Suppose that for all pairs of vectors \(v, w \in V \), \(\langle Tv, Tw \rangle = 0 \) if and only if \(\langle v, w \rangle = 0 \) (in other words, \(T \) preserves the property of orthogonality). Show that there exists some scalar \(a \) such that \(aT \) is an isometry.