Final exam study suggestions

April 4, 2011

Review the definitions of the following notions.
1. inner product
2. adjoint of a linear operator (in the presence of an inner product)
3. orthogonal complement
4. normal, self-adjoint, isometry, and positive operators
5. singular values
6. bilinear form
7. quadratic form
8. isotropic vector and subspace
9. non-degenerate bilinear form
10. signature of a symmetric bilinear form
11. radical of symmetric bilinear form
12. symplectic form
13. Lagrangian subspace
14. dual vector space
15. dual basis
16. multilinear forms (also known as k-forms)
17. tensor products

Review all of your homework problems and also the following questions.
1. Axler 6.13, 6.17, 6.21, 7.3, 7.4, 7.15, 7.21, 7.23, 7.24, 7.31, 7.32
2. Let \(p(x, y) = x^2 + 3xy + 2y^2 \). Find a symmetric bilinear form on \(\mathbb{R}^2 \) for which this polynomial is the associated quadratic form. Find the signature of this bilinear form.
3. Let H be a symmetric bilinear form on a vector space V. Let W be a subspace of V which is complementary to $\text{rad}(H)$ (i.e. $\text{rad}(H) \oplus W = V$). Prove that H restricts to a non-degenerate bilinear form on W.

4. Let Ω be a symplectic form on a vector space V. Let $W \subset V$ be a subspace. Prove that $\Omega|_W$ is non-degenerate if and only if $W \oplus W^\perp = V$.

5. Let H be a bilinear form on a vector space V. Assume the characteristic of the field is not 2. Prove that H is skew-symmetric if and only if $H(v, v) = 0$ for all $v \in V$.

6. Consider the symmetric bilinear form on \mathbb{C}^2 given by the matrix

$$
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
$$

Find a basis for \mathbb{C}^2 for which this bilinear form is represented by the identity matrix.

7. Let H be a non-degenerate symmetric bilinear form on a complex vector space V. Show that we can find a basis for V for which H is represented by the identity matrix.

8. Let W be a vector space and let $U \subset W$ be a subspace. Recall that $V = W \oplus W^*$ carries a symplectic form Ω. Let

$$
U' = \{ \alpha \in W^* : \alpha(u) = 0 \text{ for all } u \in U \}.
$$

Prove that $U \oplus U'$ is a Lagrangian subspace of V.

9. Let V, W be vector spaces. Prove that $L(V^*, W)$, the space of linear maps from V^* to W, is a tensor product for V, W.

10. Let V be a vector space and let $v_1, \ldots, v_k \in V$. Prove that $H(v_1, \ldots, v_k)$ is non-degenerate if and only if v_1, \ldots, v_k are linearly dependent.

11. Let V, W be vector spaces. Let $v_1, \ldots, v_k \in V$ be linearly independent. Suppose that there exists $w_1, \ldots, w_k \in W$ such that

$$
\sum_{i=1}^k v_i \otimes w_i = 0
$$

in $V \otimes W$. Show that $w_i = 0$ for all i.

12. Let V, W be two vector spaces. Let $v_1, v_2 \in V$ be linearly independent and let $w_1, w_2 \in W$ be linearly independent. Show that there do not exist $v \in V$ and $w \in W$ such that

$$
v_1 \otimes w_1 + v_2 \otimes w_2 = v \otimes w
$$