Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations

A foray into knot theory: the Alexander polynomial

Iva Halacheva

March 27, 2014

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Table of	Contents			

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

- The Alexander polynomialOrigin
 - Three definitions
- 3 Nice properties
- 4 Limitations

Background ●000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Knots				
What is	a knot?			

Intuitively. A closed string in \mathbb{R}^3 .

Definition

A **knot** is an embedding $S^1 \hookrightarrow \mathbb{R}^3$ which can be represented as a finite closed polygonal chain.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Background ●000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Knots				
What is	a knot?			

Intuitively. A closed string in \mathbb{R}^3 .

Definition

A **knot** is an embedding $S^1 \hookrightarrow \mathbb{R}^3$ which can be represented as a finite closed polygonal chain.

Figure: No wild knots!

Background ●000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Knots				
What is	a knot?			

Intuitively. A closed string in \mathbb{R}^3 .

Definition

A **knot** is an embedding $S^1 \hookrightarrow \mathbb{R}^3$ which can be represented as a finite closed polygonal chain.

Figure: No wild knots!

Links: Embedding several circles. Higher dimensional knots: $S^n \hookrightarrow \mathbb{R}^{n+2}$.

Background o●oo	The Alexander polynomial	Nice properties	Limitations	Generalizations
Knots				

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Intuitively. Two knots are the same if:

- stretching, bending, moving around
- no cutting and gluing

	e Alexander polynomial	Nice properties	Limitations	Generalizations
Knots				

Intuitively. Two knots are the same if:

- stretching, bending, moving around
- no cutting and gluing

Definition

Two knots K_1 and K_2 are **equivalent**, $K_1 \sim K_2$, if they are *ambient isotopic*:

- a homotopy of orientation-preserving homeomorphisms $H_t:\mathbb{R}^3\to\mathbb{R}^3$

•
$$H_0 = id$$
, $H_1(K_1) = K_2$.

Note: Isotopy doesn't work

Background 00●0	The Alexander polynomial	Nice properties	Limitations	Generalizations
Knots				
Knot dia	grams			
Given	$\mathcal{K} \subset \mathbb{R}^3$, consider a pr	ojection $\pi:\mathbb{R}^3$ –	$\rightarrow \mathbb{R}^2.$	

Background 00●0	The Alexander polynomial	Nice properties	Limitations	Generalizations
Knots				
Knot dia	igrams			

Given $K \subset \mathbb{R}^3$, consider a projection $\pi : \mathbb{R}^3 \to \mathbb{R}^2$. $p \in \pi(K)$ is a singular (double) point if $|\pi^{-1}(p)| > 1$ (= 2).

Background 00●0	The Alexander polynomial	Nice properties	Limitations	Generalizations
Knots				
Knot diag	grams			

Given $K \subset \mathbb{R}^3$, consider a projection $\pi : \mathbb{R}^3 \to \mathbb{R}^2$. $p \in \pi(K)$ is a **singular** (**double**) point if $|\pi^{-1}(p)| > 1$ (= 2). We want *regular projections*: Intuitively.

- finitely many double points
- no cusps, tangencies, triple (or higher) points

Background 00●0	The Alexander polynomial	Nice properties	Limitations	Generalizations
Knots				
Knot dia	grams			

Given $K \subset \mathbb{R}^3$, consider a projection $\pi : \mathbb{R}^3 \to \mathbb{R}^2$. $p \in \pi(K)$ is a **singular (double)** point if $|\pi^{-1}(p)| > 1$ (= 2). We want *regular projections*: Intuitively.

- finitely many double points
- no cusps, tangencies, triple (or higher) points

Definition

A projection is regular if it has:

- finitely many singular points
- all are transpose double points

Background 00●0	The Alexander polynomial	Nice properties	Limitations	Generalizations
Knots				
Knot dia	grams			

Given $K \subset \mathbb{R}^3$, consider a projection $\pi : \mathbb{R}^3 \to \mathbb{R}^2$. $p \in \pi(K)$ is a **singular (double)** point if $|\pi^{-1}(p)| > 1$ (= 2). We want *regular projections*: Intuitively.

- finitely many double points
- no cusps, tangencies, triple (or higher) points

Definition

A projection is **regular** if it has:

- finitely many singular points
- all are transpose double points

Definition

A **knot diagram** of K is a regular projection of K together with height information at each double point.

Background 000●	The Alexander polynomial	Nice properties	Limitations	Generalizations
Knots				
Knot dia	grams			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Open question

What are the equivalence classes of knots in \mathbb{R}^3 ?

Background 000●	The Alexander polynomial	Nice properties	Limitations	Generalizations
Knots				
Knot diag	grams			

Open question

What are the equivalence classes of knots in \mathbb{R}^3 ?

Reidemeister's moves on diagrams:

Background 000●	The Alexander polynomial	Nice properties	Limitations	Generalizations
Knots				
Knot dia	igrams			

Open question

What are the equivalence classes of knots in \mathbb{R}^3 ?

Reidemeister's moves on diagrams:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Background 000●	The Alexander polynomial	Nice properties	Limitations	Generalizations
Knots				
Knot dia	igrams			

Open question

What are the equivalence classes of knots in \mathbb{R}^3 ?

Reidemeister's moves on diagrams:

Theorem (Reidemeister)

 $\{knots\}/a.i.$ in $\mathbb{R}^3 = \{knot \ diagrams\}/R_1, R_2, R_3, a.i.$ in \mathbb{R}^2

Definition

A **knot invariant** is a function $F : \{\text{knots}\} \to A$ (some nice space) which has the same value on equivalent knots.

Hence, if $F(K_1) \neq F(K_2)$ we know $K_1 \not\sim K_2$.

Background 0000	The Alexander polynomial ●●●●●●●●	Nice properties	Limitations	Generalizations
Origin				
Basic Fa	cts			

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Alexander polynomial is

- discovered by James Alexander (1928)
- a knot invariant of oriented knots

Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Three definitions				
I. The or	iginal constructio	n		

Take an oriented diagram D for a knot K and number the crossings 1, ..., n, the regions 1, ..., n + 2. (Euler's formula: V + F - E = 2)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Three definitions				
I. The or	iginal constructio	n		

- Take an oriented diagram D for a knot K and number the crossings 1, ..., n, the regions 1, ..., n + 2. (Euler's formula: V + F E = 2)
- Create an $n \times (n+2)$ matrix M with $M_{i,j} = 0$ if region j doesn't touch crossing i, otherwise:

Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Three definitions				
I. The orig	ginal construction	า		

- Take an oriented diagram D for a knot K and number the crossings 1, ..., n, the regions 1, ..., n + 2. (Euler's formula: V + F E = 2)
- Create an $n \times (n+2)$ matrix M with $M_{i,j} = 0$ if region j doesn't touch crossing i, otherwise:

Solution New matrix: $\widetilde{M} = M$ with any two columns of adjacent regions deleted.

Background 0000	The Alexander polynomial ○○●○○○○○○○○	Nice properties	Limitations	Generalizations
Three definitions				
I. Example	9			

- Answer depends on deleted columns (unique up to a factor of $\pm t^k, k \in \mathbb{Z}$).
- Comes from the abelianization of $\mathbb{Z}[\pi_1(\mathbb{R}^3 \setminus K)]$.

Let K be the left-hand trefoil knot.

$$\Delta_{\mathcal{K}}(t) = -t^3 + t^2 - t = -t^2(t-1+t^{-1})$$

э

Background 0000	The Alexander polynomial ○○●○○○○○○○○	Nice properties	Limitations	Generalizations
Three definitions				
I. Example	2			

- Answer depends on deleted columns (unique up to a factor of $\pm t^k, k \in \mathbb{Z}$).
- Comes from the abelianization of $\mathbb{Z}[\pi_1(\mathbb{R}^3 \setminus K)]$.

Let K be the left-hand trefoil knot.

$$\Delta_{\mathcal{K}}(t) = -t^3 + t^2 - t = -t^2(t-1+t^{-1})$$

포 🕨 🛛 포

Background 0000	The Alexander polynomial ○○●○○○○○○○○	Nice properties	Limitations	Generalizations
Three definitions				
I. Example	9			

- Answer depends on deleted columns (unique up to a factor of $\pm t^k, k \in \mathbb{Z}$).
- Comes from the abelianization of $\mathbb{Z}[\pi_1(\mathbb{R}^3 \setminus K)]$.

Let K be the left-hand trefoil knot.

$$\Delta_{\mathcal{K}}(t) = -t^3 + t^2 - t = -t^2(t-1+t^{-1})$$

Background 0000	The Alexander polynomial ○○●○○○○○○○○	Nice properties	Limitations	Generalizations
Three definitions				
I. Example	9			

- Answer depends on deleted columns (unique up to a factor of $\pm t^k, k \in \mathbb{Z}$).
- Comes from the abelianization of $\mathbb{Z}[\pi_1(\mathbb{R}^3 \setminus K)]$.

Let K be the left-hand trefoil knot.

$$\Delta_{\mathcal{K}}(t) = -t^3 + t^2 - t = -t^2(t - 1 + t^{-1})$$

э

Background 0000	The Alexander polynomial ○○●○○○○○○○○	Nice properties	Limitations	Generalizations
Three definitions				
I. Example	9			

- Answer depends on deleted columns (unique up to a factor of $\pm t^k, k \in \mathbb{Z}$).
- Comes from the abelianization of $\mathbb{Z}[\pi_1(\mathbb{R}^3 \setminus K)]$.

Let K be the left-hand trefoil knot.

$$\Delta_{\mathcal{K}}(t) = -t^3 + t^2 - t = -t^2(t - 1 + t^{-1})$$

Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Three definitions				
II. Skein	relation			

The Alexander polynomial for an oriented link L is $\Delta_L(t) \in \mathbb{Z}[t^{-1/2}, t^{1/2}]$ given by:

•
$$\Delta_{\text{unknot}}(t) = 1$$

• $\Delta_{L_+}(t) - \Delta_{L_-}(t) - (t^{1/2} - t^{-1/2})\Delta_{L_0}(t) = 0$

where:

Background 0000	The Alexander polynomial ○000●000000	Nice properties	Limitations	Generalizations
Three definitions				

- If L is a knot, $\Delta_L(t) \in \mathbb{Z}[t, t^{-1}]$
- No ambiguity of sign and factors of t^k
- This relation allows us to compute it for all knots since:

Proposition

A knot diagram can always be transformed into the unknot by changing a finite number of crossings.

Background 0000	The Alexander polynomial ○0000€00000	Nice properties	Limitations	Generalizations
Three definitions				
II. Examp	oles			

Example 1. $\Delta_{\bigcirc}(t) = ?$

$$0 = \Delta_{L_+}(t) - \Delta_{L_-}(t) + (t^{1/2} - t^{-1/2})\Delta_{L_0}(t)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Background 0000	The Alexander polynomial ○0000●00000	Nice properties	Limitations	Generalizations
Three definitions				
II. Examp	oles			

Example 1.
$$\Delta_{\bigcirc\bigcirc}(t) = ?$$

$$0 = \Delta_{L_{+}}(t) - \Delta_{L_{-}}(t) + (t^{1/2} - t^{-1/2})\Delta_{L_{0}}(t)$$

= $\Delta_{\bigcirc}(t) - \Delta_{\bigcirc}(t) + (t^{1/2} - t^{-1/2})\Delta_{\bigcirc\bigcirc}(t)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Background 0000	The Alexander polynomial ○○○○○●○○○○○	Nice properties	Limitations	Generalizations
Three definitions				
II. Exam	oles			

Example 1.
$$\Delta_{\bigcirc\bigcirc}(t) = ?$$

$$egin{array}{rcl} 0&=&\Delta_{L_+}(t)-\Delta_{L_-}(t)+(t^{1/2}-t^{-1/2})\Delta_{L_0}(t)\ &=&\Delta_{\bigcirc}(t)-\Delta_{\bigcirc}(t)+(t^{1/2}-t^{-1/2})\Delta_{\bigcirc\bigcirc}(t)\ &=&(t^{1/2}-t^{-1/2})\Delta_{\bigcirc\bigcirc}(t) \end{array}$$

Hence, $\Delta_{\bigcirc\bigcirc}(t) = 0$.

Background 0000	The Alexander polynomial ○○○○○●○○○○○	Nice properties	Limitations	Generalizations
Three definitions				
II. Exam	ples			

Example 1.
$$\Delta_{\bigcirc\bigcirc}(t) = ?$$

Hence, $\Delta_{\bigcirc\bigcirc}(t) = 0$. Example 2. Let *H* denote the Hopf link. $\Delta_H(t) = ?$

$$0 = \Delta_{L_+}(t) - \Delta_{L_-}(t) + (t^{1/2} - t^{-1/2})\Delta_{L_0}(t)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Background 0000	The Alexander polynomial ○○○○○●○○○○○	Nice properties	Limitations	Generalizations
Three definitions				
II. Exam	ples			

Example 1.
$$\Delta_{\bigcirc\bigcirc}(t) = ?$$

Hence, $\Delta_{\bigcirc\bigcirc}(t) = 0$. Example 2. Let *H* denote the Hopf link. $\Delta_H(t) = ?$

$$egin{array}{rcl} 0&=&\Delta_{L_+}(t)-\Delta_{L_-}(t)+(t^{1/2}-t^{-1/2})\Delta_{L_0}(t)\ &=&\Delta_{H}(t)-\Delta_{\bigcirc\bigcirc}(t)+(t^{1/2}-t^{-1/2})\Delta_{\bigcirc}(t) \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Three definitions				
II. Exam	ples			

Example 1.
$$\Delta_{\bigcirc}(t) = ?$$

Hence, $\Delta_{\bigcirc\bigcirc}(t) = 0$. Example 2. Let *H* denote the Hopf link. $\Delta_H(t) = ?$

Hence, $\Delta_H(t) = t^{-1/2} - t^{1/2}$.

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > <

Background 0000	The Alexander polynomial ○○○○○○●○○○○	Nice properties	Limitations	Generalizations
Three definitions				
II. Examp	les			

Example 3. Let K denote the left-hand trefoil knot. $\Delta_K = ?$

$$0 = \Delta_{L_+}(t) - \Delta_{L_-}(t) + (t^{1/2} - t^{-1/2})\Delta_{L_0}(t)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Three definitions				
II. Examp	les			

Example 3. Let K denote the left-hand trefoil knot. $\Delta_K = ?$

$$\begin{array}{rcl} 0 & = & \Delta_{L_+}(t) - \Delta_{L_-}(t) + (t^{1/2} - t^{-1/2}) \Delta_{L_0}(t) \\ & = & \Delta_{\bigcirc}(t) - \Delta_{\mathcal{K}}(t) + (t^{1/2} - t^{-1/2}) \Delta_{\mathcal{H}}(t) \end{array}$$

Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Three definitions				
II. Examp	les			

Example 3. Let K denote the left-hand trefoil knot. $\Delta_K = ?$

$$egin{array}{rcl} 0&=&\Delta_{L_+}(t)-\Delta_{L_-}(t)+(t^{1/2}-t^{-1/2})\Delta_{L_0}(t)\ &=&\Delta_{\bigcirc}(t)-\Delta_{K}(t)+(t^{1/2}-t^{-1/2})\Delta_{H}(t)\ &=&1-\Delta_{K}(t)+(t^{1/2}-t^{-1/2})(t^{-1/2}-t^{1/2}) \end{array}$$

Hence, $\Delta_{K}(t) = t - 1 + t^{-1}$.

Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Three definitions				
III. Seife	rt surfaces			

Definition

A **Seifert surface** of a knot is an oriented surface whose boundary is the knot.

Theorem

Every knot has a Seifert surface (not unique!).

Definition

If L is an oriented link, its **linking number** lk(M) is obtained by:

$$\frac{1}{2}\sum_{x\in X}(-1)^x$$

where X is the set of crossings between different components of the link in any diagram.

Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Three definitions				
III. The S	Seifert Matrix			

Setup:

- L- oriented link with n components, Σ a Seifert surface for it with genus g
- with genus g• $\{[f_i]\}_{i=1}^{2g+n-1}$ - a basis for $H_1(\Sigma, \mathbb{Z})$.
- f_i^+ the positive pushoff of f_i (parallel, just above).

Figure: A standard basis for a genus g surface with n boundary components.

Background 0000	The Alexander polynomial ○00000000●0	Nice properties	Limitations	Generalizations
Three definitions				
III The	Seifert Matrix			

Definition

The **Seifert matrix** *M* of *L* is given by $M_{i,j} = lk(f_i, f_i^+)$.

Note: This depends on the surface and the basis.

Definition

The Alexander polynomial of a link L with Seifert matrix M is

$$\Delta_L(t) = \det(M - tM^T)$$

Remarks:

- This is defined up to $\pm t^k$.
- Originates from Deck transformations of an infinite cyclic cover of ℝ³ \ L.

Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Three definitions				
III. Examp	ble			

The figure eight knot $K_{4,1}$ has the following diagram with a corresponding Seifert surface:

The Seifert matrix is:

$$M = \begin{pmatrix} lk(a^+, a) & lk(a^+, b) \\ lk(b^+, a) & lk(b^+, b) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}$$

Then

$$\Delta_{\mathcal{K}_{4,1}}(t) = \det(M - tM^{\mathcal{T}}) = \det\begin{pmatrix} 1 - t & 1 \\ -t & t - 1 \end{pmatrix} = t(-t + 3 - t^{-1}).$$

Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Does it	behave nicelv?			

- Distinguishes all knots with eight or fewer crossings.
- **2** $\Delta_{\mathcal{K}}(1) = \pm 1$ for any knot \mathcal{K} .
- Palindromic in t and t⁻¹: Δ_L(t) = Δ_L(t⁻¹) for any link L (up to a ±t^k factor).
- One normalization: Require $\Delta_{\mathcal{K}}(1) = 1$ and $\Delta_{\mathcal{K}}(t) = \Delta_{\mathcal{K}}(t^{-1})$.
- Given such a polynomial, there is a knot whose Alexander polynomial is the same.

• Multiplicative under connected sum: $\Delta_{\kappa_1 \# \kappa_2}(t) = \Delta_{\kappa_1}(t) \Delta_{\kappa_2}(t).$

Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations
How use	ful is it?			

Doesn't distinguish:

- Mirror images and reverses of knots.
- 2 The unknot.
- Mutant knots:

Definition

To obtain a **mutant** of a knot, we rotate or reflect a disc intersecting its diagram in four points.

Figure: The Kinoshita-Terasaka and Conway knots.

What about links?

- Label all the arcs of an oriented link L. Label each crossing by the outgoing lower arc. Assign a variable to each link component.
- Create a matrix with rows indexed by the crossings, columns by the arcs, using the rule:

Compute the ingredients: μ(k) = the number of times the k-th link component is the over strand in a crossing rot(k) = the rotation number of the k-th link component

Background The Alexander polynomial Nice properties Limitations

The escape path w_i = a path starting to the right of both outgoing strands at crossing *i* to the unbounded region. Multiply by x_j^{-1} is arc of *j*-th component crosses path left to right, x_j otherwise.

Generalizations

Definition (Torres '53)

The multivariable Alexander polynomial of is a link L:

$$\Delta(L) = \frac{(-1)^{i+j} \det(M_i^j)}{w_i(x_j - 1)} \prod_k x_k^{\frac{\operatorname{rot}(k) - \mu(k)}{2}}$$

Example:

For the link L above, $\Delta(L) = y^{-1}(1 - y + y^2)$

Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Tanglas	and homology			

langles and homology

Definition

A **tangle** is an embedding of *n* arcs and *m* circles into $\mathbb{R}^2 \times [0, 1]$.

Theorem (Archibald '06)

There is an oriented tangle invariant generalizing the Alexander polynomial, with values in $\Lambda^{top}(X^{out}) \otimes \Lambda^{1/2}(X^{in} \cup X^{out})$ for a tangle with incoming and outgoing strands X^{in} and X^{out} respectively.

Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations
Haaraar	d Elaar hamalagu			

Heegaard Floer homology

Theorem (Ozsvath-Szabo '03)

Heegaard Floer Homology is an invariant of closed 3-manifolds which also gives homological invariants of knots in the manifolds. It categorifies the Alexander polynomial which is equal to its Poincare polynomial $\sum_{n} \dim(H_n)p^n$.

Background 0000	The Alexander polynomial	Nice properties	Limitations	Generalizations
The End				

Thank you!

