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Knots

What is a knot?

Intuitively. A closed string in R3.

Definition

A knot is an embedding S1 ↪→ R3 which can be represented as a
finite closed polygonal chain.

Figure: No wild knots!

Links: Embedding several circles.
Higher dimensional knots: Sn ↪→ Rn+2.
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Knots

Intuitively. Two knots are the same if:

stretching, bending, moving around

no cutting and gluing

Definition

Two knots K1 and K2 are equivalent, K1 ∼ K2, if they are
ambient isotopic :

a homotopy of orientation-preserving homeomorphisms
Ht : R3 → R3

H0 = id , H1(K1) = K2.

Note: Isotopy doesn’t work
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Knots

Knot diagrams

Given K ⊂ R3, consider a projection π : R3 → R2.

p ∈ π(K ) is a singular (double) point if |π−1(p)| > 1 (= 2).
We want regular projections:
Intuitively.

finitely many double points

no cusps, tangencies, triple (or higher) points

Definition

A projection is regular if it has:

finitely many singular points

all are transpose double points

Definition

A knot diagram of K is a regular projection of K together with
height information at each double point.
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Knots

Knot diagrams

Open question

What are the equivalence classes of knots in R3?

Reidemeister’s moves on diagrams:

Theorem (Reidemeister)

{knots}/a.i. in R3 = {knot diagrams}/R1,R2,R3, a.i. in R2

Definition

A knot invariant is a function F : {knots} → A (some nice space)
which has the same value on equivalent knots.

Hence, if F (K1) 6= F (K2) we know K1 6∼ K2.
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Origin

Basic Facts

The Alexander polynomial is

1 discovered by James Alexander (1928)

2 a knot invariant of oriented knots

3 ∆K (t) ∈ Z[t, t−1]
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Three definitions

I. The original construction

1 Take an oriented diagram D for a knot K and number the
crossings 1, ..., n, the regions 1, ..., n + 2.
(Euler’s formula: V + F − E = 2)

2 Create an n × (n + 2) matrix M with Mi ,j = 0 if region j
doesn’t touch crossing i , otherwise:

3 New matrix: M̃ = M with any two columns of adjacent
regions deleted.

4 ∆K (t) = det(M̃)
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Three definitions

I. Example

Remarks:

Answer depends on deleted columns (unique up to a factor of
±tk , k ∈ Z).

Comes from the abelianization of Z[π1(R3 \ K )].

Let K be the left-hand trefoil knot.

∆K (t) = −t3 + t2 − t = −t2(t − 1 + t−1)
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Three definitions

II. Skein relation

The Alexander polynomial for an oriented link L is
∆L(t) ∈ Z[t−1/2, t1/2] given by:

∆unknot(t) = 1

∆L+(t)−∆L−(t)− (t1/2 − t−1/2)∆L0(t) = 0

where:
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Three definitions

Remarks:

If L is a knot, ∆L(t) ∈ Z[t, t−1]

No ambiguity of sign and factors of tk

This relation allows us to compute it for all knots since:

Proposition

A knot diagram can always be transformed into the unknot by
changing a finite number of crossings.
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Three definitions

II. Examples

Example 1. ∆©©(t) =?

0 = ∆L+(t)−∆L−(t) + (t1/2 − t−1/2)∆L0(t)

= ∆©(t)−∆©(t) + (t1/2 − t−1/2)∆©©(t)

= (t1/2 − t−1/2)∆©©(t)

Hence, ∆©©(t) = 0.
Example 2. Let H denote the Hopf link. ∆H(t) =?

0 = ∆L+(t)−∆L−(t) + (t1/2 − t−1/2)∆L0(t)

= ∆H(t)−∆©©(t) + (t1/2 − t−1/2)∆©(t)

= ∆H(t) + (t1/2 − t−1/2)

Hence, ∆H(t) = t−1/2 − t1/2.
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Three definitions
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Three definitions

III. Seifert surfaces

Definition

A Seifert surface of a knot is an oriented surface whose boundary
is the knot.

Theorem

Every knot has a Seifert surface (not unique!).

Definition

If L is an oriented link, its linking number lk(M) is obtained by:

1

2

∑
x∈X

(−1)x

where X is the set of crossings between different components of
the link in any diagram.
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Three definitions

III. The Seifert Matrix

Setup:

L- oriented link with n components, Σ - a Seifert surface for it
with genus g
{[fi ]}2g+n−1

i=1 - a basis for H1(Σ,Z).
f +
i - the positive pushoff of fi (parallel, just above).

Figure: A standard basis for a genus g surface with n boundary
components.
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Three definitions

III. The Seifert Matrix

Definition

The Seifert matrix M of L is given by Mi ,j = lk(fi , f
+
j ).

Note: This depends on the surface and the basis.

Definition

The Alexander polynomial of a link L with Seifert matrix M is

∆L(t) = det(M − tMT )

Remarks:

1 This is defined up to ±tk .

2 Originates from Deck transformations of an infinite cyclic
cover of R3 \ L.
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Three definitions

III. Example

The figure eight knot K4,1 has the following diagram with a
corresponding Seifert surface:

The Seifert matrix is:

M =

(
lk(a+, a) lk(a+, b)
lk(b+, a) lk(b+, b)

)
=

(
1 1
0 −1

)
Then

∆K4,1(t) = det(M−tMT ) = det

(
1− t 1
−t t − 1

)
= t(−t+3−t−1).
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Does it behave nicely?

1 Distinguishes all knots with eight or fewer crossings.

2 ∆K (1) = ±1 for any knot K .

3 Palindromic in t and t−1: ∆L(t) = ∆L(t−1) for any link L (up
to a ±tk factor).

4 One normalization: Require ∆K (1) = 1 and
∆K (t) = ∆K (t−1).

5 Given such a polynomial, there is a knot whose Alexander
polynomial is the same.

6 Multiplicative under connected sum:
∆K1#K2(t) = ∆K1(t)∆K2(t).
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How useful is it?

Doesn’t distinguish:
1 Mirror images and reverses of knots.
2 The unknot.
3 Mutant knots:

Definition

To obtain a mutant of a knot, we rotate or reflect a disc
intersecting its diagram in four points.

Figure: The Kinoshita-Terasaka and Conway knots.
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The multivariable Alexander polynomial

What about links?

1 Label all the arcs of an oriented link L. Label each crossing by
the outgoing lower arc. Assign a variable to each link
component.

2 Create a matrix with rows indexed by the crossings, columns –
by the arcs, using the rule:

3 Compute the ingredients: µ(k) =the number of times the
k-th link component is the over strand in a crossing
rot(k) =the rotation number of the k-th link component
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The escape path wi = a path starting to the right of both outgoing
strands at crossing i to the unbounded region. Multiply by x−1

j is
arc of j-th component crosses path left to right, xj otherwise.

Definition (Torres ’53)

The multivariable Alexander polynomial of is a link L:

∆(L) =
(−1)i+j det(M j

i )

wi (xj − 1)

∏
k

x
rot(k)−µ(k)

2
k

Example:

For the link L above, ∆(L) = y−1(1− y + y2)
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Tangles and homology

Definition

A tangle is an embedding of n arcs and m circles into R2 × [0, 1].

Theorem (Archibald ’06)

There is an oriented tangle invariant generalizing the Alexander
polynomial, with values in Λtop(X out)⊗ Λ1/2(X in ∪ X out) for a
tangle with incoming and outgoing strands X in and X out

respectively.
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Heegaard Floer homology

Theorem (Ozsvath-Szabo ’03)

Heegaard Floer Homology is an invariant of closed 3-manifolds
which also gives homological invariants of knots in the manifolds.
It categorifies the Alexander polynomial which is equal to its
Poincare polynomial

∑
n dim(Hn)pn.
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The End

Thank you!
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