A foray into knot theory: the Alexander polynomial

Iva Halacheva

March 27, 2014

Table of Contents

(1) Background

- Knots
(2) The Alexander polynomial
- Origin
- Three definitions
(3) Nice properties
(4) Limitations
(5) Generalizations

What is a knot?

Intuitively. A closed string in \mathbb{R}^{3}.

Definition

A knot is an embedding $S^{1} \hookrightarrow \mathbb{R}^{3}$ which can be represented as a finite closed polygonal chain.

What is a knot?

Intuitively. A closed string in \mathbb{R}^{3}.

Definition

A knot is an embedding $S^{1} \hookrightarrow \mathbb{R}^{3}$ which can be represented as a finite closed polygonal chain.

Figure: No wild knots!

What is a knot?

Intuitively. A closed string in \mathbb{R}^{3}.

Definition

A knot is an embedding $S^{1} \hookrightarrow \mathbb{R}^{3}$ which can be represented as a finite closed polygonal chain.

Figure: No wild knots!

Links: Embedding several circles.
Higher dimensional knots: $S^{n} \hookrightarrow \mathbb{R}^{n+2}$.

Intuitively. Two knots are the same if:

- stretching, bending, moving around
- no cutting and gluing

Intuitively. Two knots are the same if:

- stretching, bending, moving around
- no cutting and gluing

Definition

Two knots K_{1} and K_{2} are equivalent, $K_{1} \sim K_{2}$, if they are ambient isotopic:

- a homotopy of orientation-preserving homeomorphisms $H_{t}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$
- $H_{0}=i d, H_{1}\left(K_{1}\right)=K_{2}$.

Note: Isotopy doesn't work

Knot diagrams

Given $K \subset \mathbb{R}^{3}$, consider a projection $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$.

Knot diagrams

Given $K \subset \mathbb{R}^{3}$, consider a projection $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$. $p \in \pi(K)$ is a singular (double) point if $\left|\pi^{-1}(p)\right|>1(=2)$.

Knot diagrams

Given $K \subset \mathbb{R}^{3}$, consider a projection $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$. $p \in \pi(K)$ is a singular (double) point if $\left|\pi^{-1}(p)\right|>1(=2)$.
We want regular projections:
Intuitively.

- finitely many double points
- no cusps, tangencies, triple (or higher) points

Knot diagrams

Given $K \subset \mathbb{R}^{3}$, consider a projection $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$. $p \in \pi(K)$ is a singular (double) point if $\left|\pi^{-1}(p)\right|>1(=2)$.
We want regular projections:
Intuitively.

- finitely many double points
- no cusps, tangencies, triple (or higher) points

Definition

A projection is regular if it has:

- finitely many singular points
- all are transpose double points

Knot diagrams

Given $K \subset \mathbb{R}^{3}$, consider a projection $\pi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$. $p \in \pi(K)$ is a singular (double) point if $\left|\pi^{-1}(p)\right|>1(=2)$. We want regular projections:
Intuitively.

- finitely many double points
- no cusps, tangencies, triple (or higher) points

Definition

A projection is regular if it has:

- finitely many singular points
- all are transpose double points

Definition

A knot diagram of K is a regular projection of K together with height information at each double point.

Knot diagrams

Open question
What are the equivalence classes of knots in \mathbb{R}^{3} ?

Knot diagrams

Open question

What are the equivalence classes of knots in \mathbb{R}^{3} ?
Reidemeister's moves on diagrams:

Knot diagrams

Open question

What are the equivalence classes of knots in \mathbb{R}^{3} ?
Reidemeister's moves on diagrams:

Theorem (Reidemeister)

$\{$ knots $\} /$ a.i. in $\mathbb{R}^{3}=\{$ knot diagrams $\} / R_{1}, R_{2}, R_{3}$, a.i. in \mathbb{R}^{2}

Knot diagrams

Open question

What are the equivalence classes of knots in \mathbb{R}^{3} ?
Reidemeister's moves on diagrams:

Theorem (Reidemeister)

$\{$ knots $\} /$ a.i. in $\mathbb{R}^{3}=\{$ knot diagrams $\} / R_{1}, R_{2}, R_{3}$, a.i. in \mathbb{R}^{2}

Definition

A knot invariant is a function $F:\{$ knots $\} \rightarrow A$ (some nice space) which has the same value on equivalent knots.

Hence, if $F\left(K_{1}\right) \neq F\left(K_{2}\right)$ we know $K_{1} \nsim K_{2}$.

Basic Facts

The Alexander polynomial is
(1) discovered by James Alexander (1928)
(2) a knot invariant of oriented knots
(3) $\Delta_{K}(t) \in \mathbb{Z}\left[t, t^{-1}\right]$

I. The original construction

(1) Take an oriented diagram D for a knot K and number the crossings $1, \ldots, n$, the regions $1, \ldots, n+2$.
(Euler's formula: $V+F-E=2$)

I. The original construction

(1) Take an oriented diagram D for a knot K and number the crossings $1, \ldots, n$, the regions $1, \ldots, n+2$.
(Euler's formula: $V+F-E=2$)
(2) Create an $n \times(n+2)$ matrix M with $M_{i, j}=0$ if region j doesn't touch crossing i, otherwise:

I. The original construction

(1) Take an oriented diagram D for a knot K and number the crossings $1, \ldots, n$, the regions $1, \ldots, n+2$.
(Euler's formula: $V+F-E=2$)
(2) Create an $n \times(n+2)$ matrix M with $M_{i, j}=0$ if region j doesn't touch crossing i, otherwise:

(3) New matrix: $\widetilde{M}=M$ with any two columns of adjacent regions deleted.
(1) $\Delta_{K}(t)=\operatorname{det}(\tilde{M})$

I. Example

Remarks:

- Answer depends on deleted columns (unique up to a factor of $\left.\pm t^{k}, k \in \mathbb{Z}\right)$.
- Comes from the abelianization of $\mathbb{Z}\left[\pi_{1}\left(\mathbb{R}^{3} \backslash K\right)\right]$.

Let K be the left-hand trefoil knot.

$$
\Delta_{K}(t)=-t^{3}+t^{2}-t=-t^{2}\left(t-1+t^{-1}\right)
$$

I. Example

Remarks:

- Answer depends on deleted columns (unique up to a factor of $\left.\pm t^{k}, k \in \mathbb{Z}\right)$.
- Comes from the abelianization of $\mathbb{Z}\left[\pi_{1}\left(\mathbb{R}^{3} \backslash K\right)\right]$.

Let K be the left-hand trefoil knot.

$$
\Delta_{K}(t)=-t^{3}+t^{2}-t=-t^{2}\left(t-1+t^{-1}\right)
$$

I. Example

Remarks:

- Answer depends on deleted columns (unique up to a factor of $\left.\pm t^{k}, k \in \mathbb{Z}\right)$.
- Comes from the abelianization of $\mathbb{Z}\left[\pi_{1}\left(\mathbb{R}^{3} \backslash K\right)\right]$.

Let K be the left-hand trefoil knot.

$$
\Delta_{K}(t)=-t^{3}+t^{2}-t=-t^{2}\left(t-1+t^{-1}\right)
$$

I. Example

Remarks:

- Answer depends on deleted columns (unique up to a factor of $\left.\pm t^{k}, k \in \mathbb{Z}\right)$.
- Comes from the abelianization of $\mathbb{Z}\left[\pi_{1}\left(\mathbb{R}^{3} \backslash K\right)\right]$.

Let K be the left-hand trefoil knot.

	r1	r2	r3	r4	r5
c1	$-t$	t	0	1	-1
c2	$-t$	1	t	0	-1
c3	$-t$	0	1	t	-1

$$
\Delta_{K}(t)=-t^{3}+t^{2}-t=-t^{2}\left(t-1+t^{-1}\right)
$$

I. Example

Remarks:

- Answer depends on deleted columns (unique up to a factor of $\left.\pm t^{k}, k \in \mathbb{Z}\right)$.
- Comes from the abelianization of $\mathbb{Z}\left[\pi_{1}\left(\mathbb{R}^{3} \backslash K\right)\right]$.

Let K be the left-hand trefoil knot.

$$
\Delta_{K}(t)=-t^{3}+t^{2}-t=-t^{2}\left(t-1+t^{-1}\right)
$$

II. Skein relation

The Alexander polynomial for an oriented link L is $\Delta_{L}(t) \in \mathbb{Z}\left[t^{-1 / 2}, t^{1 / 2}\right]$ given by:

- $\Delta_{\text {unknot }}(t)=1$
- $\Delta_{L_{+}}(t)-\Delta_{L_{-}}(t)-\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{L_{0}}(t)=0$
where:

Remarks:

- If L is a knot, $\Delta_{L}(t) \in \mathbb{Z}\left[t, t^{-1}\right]$
- No ambiguity of sign and factors of t^{k}
- This relation allows us to compute it for all knots since:

Proposition

A knot diagram can always be transformed into the unknot by changing a finite number of crossings.

II. Examples

Example 1. $\Delta_{\bigcirc \bigcirc}(t)=$?

$$
0=\Delta_{L_{+}}(t)-\Delta_{L_{-}}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{L_{0}}(t)
$$

II. Examples

Example 1. $\Delta \bigcirc \bigcirc(t)=$?

$$
\begin{aligned}
0 & =\Delta_{L_{+}}(t)-\Delta_{L_{-}}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{L_{0}}(t) \\
& =\Delta_{\bigcirc}(t)-\Delta_{\bigcirc}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{\bigcirc \bigcirc}(t)
\end{aligned}
$$

II. Examples

Example 1. $\Delta \bigcirc \bigcirc(t)=$?

$$
\begin{aligned}
0 & =\Delta_{L_{+}}(t)-\Delta_{L_{-}}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{L_{0}}(t) \\
& =\Delta_{\bigcirc}(t)-\Delta_{\bigcirc}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{\bigcirc \bigcirc}(t) \\
& =\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{\bigcirc \bigcirc(t)}
\end{aligned}
$$

Hence, $\Delta_{\bigcirc \bigcirc}(t)=0$.

II. Examples

Example 1. $\Delta_{\bigcirc \bigcirc}(t)=$?

$$
\begin{aligned}
0 & =\Delta_{L_{+}}(t)-\Delta_{L_{-}}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{L_{0}}(t) \\
& =\Delta_{\bigcirc}(t)-\Delta_{\bigcirc}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{\bigcirc \bigcirc}(t) \\
& =\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{\bigcirc \bigcirc}(t)
\end{aligned}
$$

Hence, $\Delta_{\bigcirc \bigcirc}(t)=0$.
Example 2. Let H denote the Hopf link. $\Delta_{H}(t)=$?

$$
0=\Delta_{L_{+}}(t)-\Delta_{L_{-}}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{L_{0}}(t)
$$

II. Examples

Example 1. $\Delta_{\bigcirc \bigcirc}(t)=$?

$$
\begin{aligned}
0 & =\Delta_{L_{+}}(t)-\Delta_{L_{-}}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{L_{0}}(t) \\
& =\Delta_{\bigcirc}(t)-\Delta_{\bigcirc}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{\bigcirc \bigcirc}(t) \\
& =\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{\bigcirc \bigcirc}(t)
\end{aligned}
$$

Hence, $\Delta_{\bigcirc \bigcirc}(t)=0$.
Example 2. Let H denote the Hopf link. $\Delta_{H}(t)=$?

$$
\begin{aligned}
0 & =\Delta_{L_{+}}(t)-\Delta_{L_{-}}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{L_{0}}(t) \\
& =\Delta_{H}(t)-\Delta_{\bigcirc \bigcirc}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{\bigcirc}(t)
\end{aligned}
$$

II. Examples

Example 1. $\Delta_{\bigcirc \bigcirc}(t)=$?

$$
\begin{aligned}
0 & =\Delta_{L_{+}}(t)-\Delta_{L_{-}}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{L_{0}}(t) \\
& =\Delta_{\bigcirc}(t)-\Delta_{\bigcirc}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{\bigcirc \bigcirc}(t) \\
& =\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{\bigcirc \bigcirc}(t)
\end{aligned}
$$

Hence, $\Delta_{\bigcirc \bigcirc}(t)=0$.
Example 2. Let H denote the Hopf link. $\Delta_{H}(t)=$?

$$
\begin{aligned}
0 & =\Delta_{L_{+}}(t)-\Delta_{L_{-}}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{L_{0}}(t) \\
& =\Delta_{H}(t)-\Delta_{\bigcirc \bigcirc}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{\bigcirc}(t) \\
& =\Delta_{H}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right)
\end{aligned}
$$

Hence, $\Delta_{H}(t)=t^{-1 / 2}-t^{1 / 2}$.

II. Examples

Example 3. Let K denote the left-hand trefoil knot. $\Delta_{K}=$?

$$
0=\Delta_{L_{+}}(t)-\Delta_{L_{-}}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{L_{0}}(t)
$$

II. Examples

Example 3. Let K denote the left-hand trefoil knot. $\Delta_{K}=$?

$$
\begin{aligned}
0 & =\Delta_{L_{+}}(t)-\Delta_{L_{-}}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{L_{0}}(t) \\
& =\Delta_{\bigcirc}(t)-\Delta_{K}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{H}(t)
\end{aligned}
$$

II. Examples

Example 3. Let K denote the left-hand trefoil knot. $\Delta_{K}=$?

$$
\begin{aligned}
0 & =\Delta_{L_{+}}(t)-\Delta_{L_{-}}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{L_{0}}(t) \\
& =\Delta_{\bigcirc}(t)-\Delta_{K}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right) \Delta_{H}(t) \\
& =1-\Delta_{K}(t)+\left(t^{1 / 2}-t^{-1 / 2}\right)\left(t^{-1 / 2}-t^{1 / 2}\right)
\end{aligned}
$$

Hence, $\Delta_{K}(t)=t-1+t^{-1}$.

III. Seifert surfaces

Definition

A Seifert surface of a knot is an oriented surface whose boundary is the knot.

Theorem

Every knot has a Seifert surface (not unique!).

Definition

If L is an oriented link, its linking number $1 k(M)$ is obtained by:

$$
\frac{1}{2} \sum_{x \in X}(-1)^{x}
$$

where X is the set of crossings between different components of the link in any diagram.

III. The Seifert Matrix

Setup:

- L- oriented link with n components, Σ - a Seifert surface for it with genus g
- $\left\{\left[f_{i}\right]\right\}_{i=1}^{2 g+n-1}$ - a basis for $H_{1}(\Sigma, \mathbb{Z})$.
- f_{i}^{+}- the positive pushoff of f_{i} (parallel, just above).

Figure: A standard basis for a genus g surface with n boundary components.

III. The Seifert Matrix

Definition

The Seifert matrix M of L is given by $M_{i, j}=\mathbb{l k}\left(f_{i}, f_{j}^{+}\right)$.
Note: This depends on the surface and the basis.

Definition

The Alexander polynomial of a link L with Seifert matrix M is

$$
\Delta_{L}(t)=\operatorname{det}\left(M-t M^{T}\right)
$$

Remarks:
(1) This is defined up to $\pm t^{k}$.
(2) Originates from Deck transformations of an infinite cyclic cover of $\mathbb{R}^{3} \backslash L$.

III. Example

The figure eight knot $K_{4,1}$ has the following diagram with a corresponding Seifert surface:

The Seifert matrix is:

$$
M=\left(\begin{array}{cc}
\operatorname{lk}\left(a^{+}, a\right) & \operatorname{lk}\left(a^{+}, b\right) \\
\operatorname{lk}\left(b^{+}, a\right) & \operatorname{lk}\left(b^{+}, b\right)
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right)
$$

Then
$\Delta_{K_{4,1}}(t)=\operatorname{det}\left(M-t M^{T}\right)=\operatorname{det}\left(\begin{array}{cc}1-t & 1 \\ -t & t-1\end{array}\right)=t\left(-t+3-t^{-1}\right)$.

Does it behave nicely?

(1) Distinguishes all knots with eight or fewer crossings.
(2) $\Delta_{K}(1)= \pm 1$ for any knot K.
(3) Palindromic in t and $t^{-1}: \Delta_{L}(t)=\Delta_{L}\left(t^{-1}\right)$ for any link L (up to a $\pm t^{k}$ factor).
(9) One normalization: Require $\Delta_{K}(1)=1$ and $\Delta_{K}(t)=\Delta_{K}\left(t^{-1}\right)$.
(5) Given such a polynomial, there is a knot whose Alexander polynomial is the same.
(0) Multiplicative under connected sum:
$\Delta_{K_{1} \# K_{2}}(t)=\Delta_{K_{1}}(t) \Delta_{K_{2}}(t)$.

How useful is it?

Doesn't distinguish:
(1) Mirror images and reverses of knots.
(2) The unknot.
(3) Mutant knots:

Definition

To obtain a mutant of a knot, we rotate or reflect a disc intersecting its diagram in four points.

Figure: The Kinoshita-Terasaka and Conway knots.

The multivariable Alexander polynomial

What about links?
(1) Label all the arcs of an oriented link L. Label each crossing by the outgoing lower arc. Assign a variable to each link component.
(2) Create a matrix with rows indexed by the crossings, columns by the arcs, using the rule:

(3) Compute the ingredients: $\mu(k)=$ the number of times the k-th link component is the over strand in a crossing $\operatorname{rot}(k)=$ the rotation number of the k-th link component

The escape path $w_{i}=$ a path starting to the right of both outgoing strands at crossing i to the unbounded region. Multiply by x_{j}^{-1} is arc of j-th component crosses path left to right, x_{j} otherwise.

Definition (Torres '53)

The multivariable Alexander polynomial of is a link L :

$$
\Delta(L)=\frac{(-1)^{i+j} \operatorname{det}\left(M_{i}^{j}\right)}{w_{i}\left(x_{j}-1\right)} \prod_{k} x_{k}^{\frac{\mathrm{rot}(k)-\mu(k)}{2}}
$$

Example:

For the link L above, $\Delta(L)=y^{-1}\left(1-y+y^{2}\right)$

Tangles and homology

Definition

A tangle is an embedding of n arcs and m circles into $\mathbb{R}^{2} \times[0,1]$.

Theorem (Archibald '06)

There is an oriented tangle invariant generalizing the Alexander polynomial, with values in $\Lambda^{\text {top }}\left(X^{\text {out }}\right) \otimes \Lambda^{1 / 2}\left(X^{\text {in }} \cup X^{\text {out }}\right)$ for a tangle with incoming and outgoing strands $X^{\text {in }}$ and $X^{\text {out }}$ respectively.

Heegaard Floer homology

Theorem (Ozsvath-Szabo '03)

Heegaard Floer Homology is an invariant of closed 3-manifolds which also gives homological invariants of knots in the manifolds. It categorifies the Alexander polynomial which is equal to its Poincare polynomial $\sum_{n} \operatorname{dim}\left(H_{n}\right) p^{n}$.

The End

Thank you!

