Complex Analysis

Assignment 6, due November 16
Problem 1 of 5 . Let f be an entire function.
(1) Assume that an f satisfies the condition

$$
|f(z)| \leq C|z|^{d}, \quad|z|>R
$$

where C and R are some positive constants. Show that f is a polynomial of degree at most d.
Hint: Use Cauchy Inequlities to estimate $f^{(d+1)}(w)$.
(2) Assume that f has a removable singularity or pole at infinity (i.e. $\lim _{z \rightarrow \infty} f(z)$ exists, but might be infinite). Show that f is a polynomial.
Hint: It might be useful to consider the function $f(1 / z)$ at 0
Problem 2 of 5 . A function $f: \mathbb{R} \mapsto \mathbb{C}$ is called real-analytic on \mathbb{R} if for any $x \in \mathbb{R}$ there exists $R_{x}>0$ and a sequence of coefficients $\left(a_{n}^{x}\right)_{n=0}^{\infty}$ such that

$$
f(y)=\sum_{n=0}^{\infty} a_{n}^{x}(y-x)^{n}, \text { if }|y-x|<R_{x} .
$$

Let f be a real analytic function.
(1) Show that there exists a region $\Omega \supset \mathbb{R}$ and a function F, analytic in Ω, such that for any $x \in \mathbb{R}, f(x)=F(x)$.
(2) Show that f is infinitely differentiable for any $x \in \mathbb{R}$, and $a_{n}^{x}=\frac{f^{n}(x)}{n!}$.
(3) Show that if $\left(x_{n}\right)$ is a bounded real sequence, and for any $n, f\left(x_{n}\right)=0$, then $f \equiv 0$.

Problem 3 of 5. Problem 5, page 130 of Ahlfors.
Problem 4 of 5. Let f be analytic in the region $\{z:|z|>R\}$. Assume that $\lim _{|z| \rightarrow \infty} f(z)$ exists and finite. Let, for $r>R, M(r):=\max _{|z|=r}|f(z)|$. Show that $M(r)$ is a decreasing function.
Hint: Consider $f(1 / z)$.
Problem 5 of 5 . Let P be a polynomial of degree $d, M(r):=\max _{|z|=r}|P(z)|$. Show that for any $0<r_{1}<r_{2}$, we have

$$
\frac{M\left(r_{1}\right)}{r_{1}^{d}} \geq \frac{M\left(r_{2}\right)}{r_{2}^{d}}
$$

The equality is attained for some $0<r_{1}<r_{2}$ if and only if $P(z)=c z^{d}$ for some $c \neq 0$.

