Complex Analysis

Assignment 5, due November 9

Problem 1 of 5. Problem 4, page 108 of Ahlfors.
Problem 2 of 5. Let f be a continuous function in a disk $B\left(z_{0}, r\right)$, let γ^{δ} be the circle $\left\{\left|z-z_{0}\right|=\delta\right\}$ oriented counterclockwise. Prove that

$$
\lim _{\delta \rightarrow 0} \oint_{\gamma^{\delta}} \frac{f(z)}{z-z_{0}} d z=2 \pi i f\left(z_{0}\right) .
$$

Problem 3 of 5. Let γ be a curve from 0 to 1 not passing through i or $-i$. Prove that

$$
\oint_{\gamma} \frac{d z}{1+z^{2}}=\frac{\pi}{4}+k \pi, \quad k \in \mathbb{Z} .
$$

Problem 4 of 5. Assume that f is a continuous function on the closed disk $\overline{B\left(z_{0}, r\right)}$ which is analytic on the open disk $B\left(z_{0}, r\right)$. Prove that

$$
\oint_{C_{r}} f(\xi) d \xi=0
$$

where C_{r} is the positively oriented circle of radius r centered at z_{0}.
Be careful: you cannot assume that f is analytic in the closed disk $\overline{B\left(z_{0}, r\right)}$.
Problem 5 of 5 . Let $\Gamma:[a, b] \times[0,1] \mapsto \mathbb{C}$ be a continuous function with $\Gamma(a, s)=\Gamma(b, s)$ for all $0 \leq s \leq 1$. Let $\gamma_{1}(t)=\Gamma(t, 0), \gamma_{2}(t)=\Gamma(t, 1):[a, b] \mapsto \mathbb{C}$ be two closed curves. Let $z_{0} \notin \Gamma([a, b] \times[0,1])$. Show that

$$
n\left(\gamma_{1}, z_{0}\right)=n\left(\gamma_{2}, z_{0}\right)
$$

Remark: Γ is called a homotopy between γ_{1} and γ_{2}.

