Complex Analysis

Assignment 4, due November 2

Problem 1 of 5. Problem 3, page 72 of Ahlfors.
Problem 2 of 5. Let C be a circle, and z_{1}, z_{2} be two complex numbers, $z_{1} \notin C, z_{2} \notin C$. Show that there exists unique Möbius map S such that $S(C)=C, S\left(z_{1}\right)=z_{2}, S^{\prime}\left(z_{1}\right)>0$.
Problem 3 of 5.
(1) Problem 6, page 83 of Ahlfors.
(2) Problem 7, page 83 of Ahlfors.
(3) Find all the circles which are orthogonal to both of the circles $|z|=1$ and $|z-1 / 4|=$ $1 / 4$.

Problem 4 of 5. Problem 3, page 88 of Ahlfors.
Problem 5 of 5. Problem 4, page 88 of Ahlfors.

