Complex Analysis

Assignment 3, due October 4

Problem 1 of 5. Let

$$
p(z)=a_{d} z^{d}+a_{d-1} z^{d-1}+\cdots+a_{0}
$$

be a polynomial of degree d. Use Gauss' Theorem to prove that for any $w \in \mathbb{C}$ the equation $p(z)=w$ has a solution with

$$
|z| \geq\left|\frac{a_{d-1}}{d a_{d}}\right| .
$$

Problem 2 of 5 . Problem 4, page 33 of Ahlfors.
Problem 3 of 5. Problem 6, page 33 of Ahlfors.
Problem 4 of 5. Let $\sum_{n=0}^{\infty} a_{n} z^{n}$ and $\sum_{n=0}^{\infty} b_{n} z^{n}$ be two power series with the radii of convergence R_{1} and R_{2} correspondingly. Prove that
(1) The radius of convergence R of the series $\sum_{n=0}^{\infty}\left(a_{n}+b_{n}\right) z^{n}$ satisfies $R \geq \min \left(R_{1}, R_{2}\right)$ and that equality holds if $R_{1} \neq R_{2}$.
(2) The radius of convergence R of the series $\sum_{n=0}^{\infty}\left(a_{n} b_{n}\right) z^{n}$ satisfies $R \geq R_{1} R_{2}$.

Problem 5 of 5 . Determine the radius of convergence of each of the following series:
(1) $\sum_{n=1}^{\infty}\left(\frac{7 n^{4}+2 n^{3}}{3 n^{4}+2 n}\right) z^{n}$
(2) $\sum_{n=1}^{\infty}\left(n^{2}+a^{n}\right) z^{n}, a \in \mathbb{C}$
(3) $\sum_{n=1}^{\infty}(\sin n) z^{n}$

