
Complex Analysis
Assignment 3, due October 4

Problem 1 of 5. Let
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be a polynomial of degree d. Use Gauss’ Theorem to prove that for any w ∈ C the equation
p(z) = w has a solution with
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Problem 2 of 5. Problem 4, page 33 of Ahlfors.

Problem 3 of 5. Problem 6, page 33 of Ahlfors.

Problem 4 of 5. Let
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n and

∑∞
n=0 bnz

n be two power series with the radii of
convergence R1 and R2 correspondingly. Prove that

(1) The radius of convergence R of the series
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n satisfies R ≥ min(R1, R2)

and that equality holds if R1 ̸= R2.

(2) The radius of convergence R of the series
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n satisfies R ≥ R1R2.

Problem 5 of 5. Determine the radius of convergence of each of the following series:
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