## Complex Analysis

## Assignment 2, due September 28

Problem 1 of 5 . Let $g$ be a continuous function on a disk $B\left(z_{0}, \delta\right)$, and $f$ be a complexdifferentiable function at the point $g\left(z_{0}\right)$, which satisfies the relation $f(g(z))=z$ for all $z \in B\left(z_{0}, \delta\right)$. Assume that $f^{\prime}\left(g\left(z_{0}\right)\right) \neq 0$. Show that $g$ is complex-differentiable at $z_{0}$ and

$$
g^{\prime}\left(z_{0}\right)=\frac{1}{f^{\prime}\left(g\left(z_{0}\right)\right)} .
$$

Problem 2 of 5 . Let $f$ be defined in some disk $B\left(z_{0}, \delta\right)$ and real-differentiable at $z_{0}$. Assume that

$$
\lim _{z \rightarrow z_{0}}\left|\frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}\right|
$$

exists. Show that either $f$ or $\bar{f}$ is complex-differentiable at $z_{0}$.
Problem 3 of 5. Problem 4, page 28 of Ahlfors.
Problem 4 of 5. Problem 5, page 28 of Ahlfors.
Problem 5 of 5. Problem 7, page 28 of Ahlfors.

