Complex Analysis

Assignment 1, due September 21

Problem 1 of 5 . Let A be a linear map from \mathbb{R}^{2} to \mathbb{R}^{2}.
(1) Show that A is Complex Linear, i.e.

$$
A(\lambda z)=\lambda A(z), \quad \forall \lambda \in \mathbb{C}, z \in \mathbb{C}
$$

if and only if A has a matrix M_{w} for some complex w. Show that in this case $A(z)=w z$.
(2) Show that A is Complex Anti-Linear, i.e.

$$
A(\lambda z)=\bar{\lambda} A(z), \quad \forall \lambda \in \mathbb{C}, z \in \mathbb{C}
$$

if and only if A has a matrix $M_{w} \times\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ for some complex w. Show that in this case $A(z)=w \bar{z}$.

Problem 2 of 5. Let $p>1$ and $q=\frac{p}{p-1}$.
(1) Let $a \geq 0$ and $b \geq 0$. Show that the rectangle $\{(x, y): 0 \leq x \leq a ; 0 \leq y \leq b\}$ is contained in the union of subgraphs
$\left\{(x, y): 0 \leq x \leq a ; 0 \leq y \leq x^{p-1}\right\} \cup\left\{(x, y): 0 \leq y \leq b ; 0 \leq x \leq y^{1 /(p-1)}\right\}$.
(2) Use the previous inclusion and integration to prove Young's inequality:

$$
a b \leq \frac{a^{p}}{p}+\frac{b^{q}}{q},
$$

where $a \geq 0$ and $b \geq 0$.
(3) Use Young's inequality to show that if $a_{j} \geq 0, b_{j} \geq 0$ and

$$
\sum_{j=1}^{n} a_{j}^{p}=\sum_{j=1}^{n} b_{j}^{q}=1,
$$

then

$$
\sum_{j=1}^{n} a_{j} b_{j} \leq 1
$$

(4) Prove Hölder inequality:

$$
\left|\sum_{j=1}^{n} z_{j} w_{j}\right| \leq\left(\sum_{j=1}^{n}\left|z_{j}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{j=1}^{n}\left|w_{j}\right|^{q}\right)^{\frac{1}{p}}
$$

where z_{j} and w_{j} are arbitrary complex numbers. When $p=q=2$, this is called Cauchy inequality.
Hint: Take $a_{j}=\frac{\left|z_{j}\right|}{\left(\sum_{j=1}^{n}\left|z_{j}\right|^{p}\right)^{\frac{1}{p}}}$ and $b_{j}=\frac{\left|w_{j}\right|}{\left(\sum_{j=1}^{n}\left|w_{j}\right|^{q}\right)^{\frac{1}{q}}}$ and apply the previous part. Be sure to deal with the case when one of the denominators is zero.

Problem 3 of 5. Problem 3 on Page 15.

Problem 4 of 5. Problem 4 on Page 16.
Problem 5 of 5. Problem 5 on Page 20.

