Let $\left(a_{n}\right)$ be a bounded sequence of real numbers. Let us define sets

$$
R_{n}:=\left\{a_{k}: k \geq n\right\} .
$$

Let $s_{n}:=\sup R_{n}, m_{n}:=\inf R_{n}$. Since $R_{n+1} \subset R_{n}$, we have $s_{n} \geq s_{n+1}, m_{n} \leq m_{n+1}$. Thus both sequences $\left(s_{n}\right)$ and $\left(m_{n}\right)$ are monotone and bounded (Why?), so they are both convergent to their infimum and supremum correspondingly.

Definition. Limit superior of $\left(a_{n}\right)$ is defined as

$$
\limsup _{n \rightarrow \infty} a_{n}:=\lim _{n \rightarrow \infty} s_{n}=\inf s_{n} .
$$

Limit inferior of $\left(a_{n}\right)$ is defined as

$$
\liminf _{n \rightarrow \infty} a_{n}:=\lim _{n \rightarrow \infty} m_{n}=\sup m_{n} .
$$

Example. Let $a_{n}=(-1)^{n}$. Then, for any $n, s_{n}=1, m_{n}=-1$ and

$$
\limsup a_{n}=1, \quad \liminf a_{n}=-1 .
$$

Proposition. Let $\left(a_{n}\right)$ be a bounded sequence of real numbers. Then

$$
\lim _{n \rightarrow \infty} a_{n}=a
$$

if and only if

$$
\limsup _{n \rightarrow \infty} a_{n}=\liminf _{n \rightarrow \infty} a_{n}=a
$$

Proof. Let $\lim _{n \rightarrow \infty} a_{n}=a$. Fix $\varepsilon>0$. For some N, if $n \geq N$ then $\left|a_{n}-a\right|<\varepsilon / 2$. Then, for such $n, R_{n} \subset V_{\varepsilon / 2}(a)$. Therefore,

$$
a-\varepsilon<m_{n}=\inf R_{n} \leq \sup R_{n}=m_{n}<a+\varepsilon .
$$

So for $n \geq N$ we have $\left|m_{n}-a\right|<\varepsilon$ and $\left|s_{n}-a\right|<\varepsilon$. So

$$
\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=a
$$

and

$$
\liminf _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} m_{n}=a .
$$

On the other hand, $m_{n} \geq a_{n} \geq s_{n}$ (since $a_{n} \in R_{n}$). So, by the Squeezed sequence lemma, if

$$
\limsup _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}=a=\liminf _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} m_{n},
$$

then

$$
\lim _{n \rightarrow \infty} a_{n}=a .
$$

