Stereographic projection

Monday, December 7, 2020 9:02 AM

Stereographic projection

Stereographic Projection of Coordinate Grid to Sphere

$$
\frac{x_{1}=\left(1-x_{3}\right) x=\frac{2 x}{|z|^{2}+1}}{2 \operatorname{Im} z}=\frac{2 R_{e} z}{|z|^{2}+1}=x_{1}
$$

$$
x_{2}=\frac{2 \operatorname{Im} z}{|z|^{2}+1}
$$

$$
z=\frac{x_{1}+i x_{2}}{1-x_{3}}
$$

Spherical distance.
$d\left(z, z^{\prime}\right):=\left|z-z^{\prime}\right|-d$ stance on the sphere.

By similarity of triangles:

$$
\frac{|N-z|}{2}=\frac{1}{|N-z|_{1}}=\frac{1}{\sqrt{1+|z|^{2}}}
$$

$$
\begin{aligned}
& \frac{|N-z|}{2}=\frac{1}{|N-z|}=\frac{1}{\sqrt{1+|z|^{2}}} \\
& \text { P, thagoras } \\
& \frac{20}{|N-z|}=\frac{2}{\sqrt{\left|1+|z|^{2}\right|^{\prime}}} \sqrt{1+\left|z^{\prime}\right|^{2}}
\end{aligned}
$$

Same reason.

$$
\frac{\left|N-z^{\prime}\right|}{|N-z|}=\frac{2}{\sqrt{1+|z|^{2}} \sqrt{1+\left|z^{\prime}\right|^{\prime 2}}}
$$

So $\triangle N 22^{\prime}$ and $\triangle N_{2 z^{\prime}}$ arcesimilar!
So $\frac{d\left(z, z^{\prime} \mid\right.}{\left|z-z^{\prime}\right|}=\frac{\left|z-z^{\prime}\right|}{\left|z \cdot z^{\prime}\right|}=\frac{2}{\sqrt{1+|z|^{2}} \sqrt{1+\left|z^{\prime}\right|^{2}}}$
$d\left(z, z^{\prime}\right)=\frac{2\left|z-z^{\prime}\right|}{\sqrt{1+|z|^{2}} \sqrt{1+\left|z^{\prime}\right|^{2}}}$
$|z-M|=d(z, \infty)=\lim _{z^{\rightarrow} \rightarrow \infty} d\left(z, z^{\prime}\right)=\frac{2}{\sqrt{1+|z|^{\prime}}}$.
Bonus $(+1 p-1): \tilde{d}\left(z, z^{\prime}\right)=\operatorname{dist}_{\text {spherical }}\left(z, z^{\prime}\right)=$?
(i nterms of z, z^{\prime}).

Circles and straight lines on \mathbb{C} are mapped to circles.

Proof.
For straight line: the image is the intersection of the sphere s with the plane through the line and N : a circle through N !

Circle: computation:

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

substitute by formula: $\binom{x}{y}=\frac{1}{1-x_{3}}\binom{x_{1}}{x_{2}}$

$$
\begin{gathered}
a x_{1}+b x_{2}+\frac{1+r^{2}-a^{2}-b^{2}}{2} x_{3}=\frac{a^{2}+b^{2}-r^{2}+1}{2}-\text { equation of } \\
\text { aplane! }
\end{gathered}
$$

So, again, the image is plane intersected with \mathbb{S} !
And any plane intersecting S and not through N is of this form!

Can be done geometrically: see
Proof (stereographic projection proof that circles on the sphere project to circles in the plane)

Some transformations:	
On \mathbb{C}	On $^{\text {S }}$
$z \rightarrow \bar{z}$	$\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1},-x_{2}, x_{3}\right)$
$z \rightarrow \frac{1}{z}$	$\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1}, x_{2},-x_{3}\right)$
$z \rightarrow \frac{1}{z}$	$\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(x_{1},-x_{2},-x_{3}\right)$

All of them preserve $d\left(z, z^{\prime}\right)$!
Does $z \rightarrow z+1$ preserve $d\left(z, z^{\prime}\right)^{7} \cdot N_{0} 1$

