Theorem (Schwarz Lemma). Let \(f \in \mathcal{A}(D) \), \(|f(z)| \leq 1 \) \(\forall z \in D \), \(f(0) = 0 \). Then \(\forall z \in D \) \(|f(z)| \leq |z| \), and \(|f'(0)| \leq 1 \).
If for some \(z \in D \) \(|f(z)| = 1 \) or \(|f'(0)| = 1 \), then \(f(z) = e^{i\theta}z \). (\(f \) is a rotation by \(\theta \)).

Proof. Let \(\varphi(z) = \left(\frac{f(z)}{z}, \frac{f'(0)}{2} \right) \). Then \(\varphi \in \mathcal{A}(D \setminus \{0\}) \), \(\lim_{|z| \to 0} \varphi(z) = \lim_{|z| \to 0} \frac{f(z)}{z} = f'(0) \), so \(\varphi \in \mathcal{A}(D) \).
Take \(r \in D \). Then, by maximum principle, \(\forall z \in B(r) \):
\[
|\varphi(z)| = \max_{|z|=r} |\varphi(z)| = \max_{|z|=r} \left| \frac{f(z)}{z} \right| \leq \frac{1}{r}.
\]
So \(\forall z \in B(1) \) we have \(|\varphi(z)| \leq 1 \) \(\Rightarrow |f(z)| \leq 1 \).
If for some \(z \), \(|\varphi(z)| = 1 \) (which is \(|f(z)| = |z| i \neq 2z0 \))
then \(|\varphi| \) reaches maximum at \(z \), so
\[
\varphi(z) = \text{const.} \quad (\text{const} \in D) \quad \text{const} = e^{i\theta}.
\]
\[
f(z) = \frac{z}{e^{i\theta}}.
\]

An invariant form of Schwarz Lemma.

Theorem (Schwarz-Pick).
Let \(f \in \mathcal{A}(D) \), \(f : D \to D \) (i.e. \(\forall z \in D \) \(|f(z)| < 1 \)).
Then \(\forall z_1, z_2 \in D \)
\[
|f(z_1) - f(z_2)| \leq |z_1 - z_2|.
\]
\[
\left| \frac{f(z_2) - f(z_1)}{1 - \frac{z_2}{z_1}} \right| \leq \left| \frac{z_2 - z_1}{1 - \frac{z_2}{z_1}} \right| \quad \text{and} \quad \left| f(z) \right| \leq \frac{1}{1 - |z|^2}
\]

If the equality is reached for some \(z_1, z_2 \in \mathbb{D} \) or for some \(z \in \mathbb{C} \), then \(f \) is a Möbius transformation \(\mathbb{D} \to \mathbb{D} \).

Proof. For \(w \in \mathbb{D} \), denote \(S_w(z) = \frac{z - w}{1 - \overline{w}z} \). Then \(S_{f(z)}(z) \) is a Möbius map \(\mathbb{S}^1 \to \mathbb{S}^1 \).

Consider the map \(g(z) = S_{f(z)}(z) \). Then \(g(0) = S_{f(0)}(0) = S_{f(0)}(z_1) = \{ \} \) and \(g : \mathbb{D} \to \mathbb{D} \)

So, by Schwarz lemma. (Since each map \(\partial \mathbb{D} \))

\[|S_{f(z)}(z) + S_{f(z)}(w)| \leq |z| \quad \text{for } z \in \mathbb{D} \text{ and } w \in \mathbb{D} \]

Then \(S_{f(z)}(z) + S_{f(z)}(w) = 2z \). Hence, \(S_{f(z)}(z) = S_{f(z)}(w) = \frac{f(z) - f(w)}{1 - f(z)f(w)} \).

So it implies the inequality

\[\left| \frac{f(z) - f(w)}{1 - \frac{z}{w}} \right| \leq \left| \frac{z - w}{1 - \frac{z}{w}} \right| \]

Let \(z_1 \to z_1 \) to get the second inequality.

Finally, equality is reached in any of the inequalities \(\Rightarrow \)

\[|g(z)| = |z| \text{ for some } \tau \text{ or } \left| g'(0) \right| = \left| \right| \text{ for some } \tau \]

\[f = S_{f(0)}^{-1} \circ S_w \circ S_{f(z)} \to \text{ Möbius } \]

Def. \(\rho (z_1, z_2) := \left| \frac{z_1 - z_2}{1 - \frac{z_1}{z_2}} \right| = \sqrt{\left| \frac{z_1 - z_2}{1 - \frac{z_1}{z_2}} \right|} \)

Quasi-hyperbolic metric.

Möbius maps fixing circle preserve:

1) Cross-ratio.
2) Points symmetric with respect to the unit circle.

So they preserve \(\rho \) if \(\tau e^{i \theta} \to \frac{\tau}{e^{i \theta}} \) then \(\rho (\tau z, \tau w) = \rho (z, w) \).

Why is \(\rho \) metric?

\[\rho (z_1, z_2) = 0 \quad \text{iff} \quad z_1 = z_2 \] Obvious.

\[\rho (z_1, z_2) = \rho (z_2, z_1) \]

\[\rho (z_1, z_2) + \rho (z_2, z_3) \geq \rho (z_1, z_3) \]

Möbius is invariant, so map \(z_1 \to 0, z_2 \to 1, z_3 \to r > 0 \)

Then \(\rho (z_1, z_2) = r \), \(\rho (z_2, z_3) = \frac{r - 1}{1 - r} \), \(\rho (z_1, z_3) = \frac{r - 1}{1 - r} \)

For fixed \(r \), the image of the circle \(\{ |z| = 1 \} \) under \(S(z) = \frac{r z}{1 - rz} \) a circle symmetric with \(\mathbb{R} \), \(S(1z) = \frac{r - 1}{1 - r(1)} \), \(S(-1z) = \frac{r - 1}{1 - r(1)} \), \(S(1z) = \frac{r + 1}{1 + r} \), \(S(-1z) = \frac{r + 1}{1 + r} \), \(\rho (z_1, z_2) < r \).
Theorem. Let \(f \in A(D) \), \(f : D \to D \) be bijection. Then \(f \) is a Möbius map.

Proof. \(\forall z_1, z_2 \in D \).

\[
\rho(f(z_1), f(z_2)) \leq \rho(z_1, z_2)
\]

But \(f^{-1} : D \to D \), analytic.

So \(\rho(z_1, z_2) = \rho(f^{-1}(f(z_1)), f^{-1}(f(z_2))) \leq \rho(f(z_1), f(z_2)) \).

So \(\rho(z_1, z_2) = \rho(f(z_1), f(z_2)) \Rightarrow f \) is Möbius.

Corollary. \(\rho \) is invariant under all conformal bijections of \(D \) to itself.

Hyperbolic metric.

How to measure the length of curve?

\[
l(Y) = \int_{Y} \frac{1}{1-|z|^2} \, dt
\]

Know: Under Möbius, \(\frac{|f'(z)|}{1-|f(z)|^2} = \frac{1}{1-|z|^2} \). By Schwarz-Pick.

For any \(f \in A(D), f : D \to D \)

\[
\frac{|f'(z)|}{1-|f(z)|^2} \leq \frac{1}{1-|z|^2}.
\]

Definition: Hyperbolic length of a path:

Let \(\gamma \) be a piecewise differentiable arc, parametrized by \(\gamma(t), t \in \mathbb{C}, \mathbb{E} \).

\[
l_{H}(\gamma) = \int_{\gamma} \frac{1}{1-|z|^2} \, dt = \int_{\gamma} \frac{|d\gamma|}{1-|z|^2}
\]

in \(D \)

Restatement of Schwartz-Pick:

For any curve \(\gamma \in D \) and any \(f : D \to D \) analytic

\[
l_{H}(\gamma) < l_{H}(\gamma). \quad \text{If the equality is reached for one curve, then } f \text{ is Möbius. If } f \text{ is Möbius, then } \forall \gamma : l_{H}(\gamma) = l_{H}(\gamma)
\]

Proof. \[
\frac{|f'(z)||z'(t)|}{1-|f(z)|^2} \leq \frac{12 |z|^2}{1-|z|^2}. \quad \text{Equality for one point(\(\infty \))}
\]

Equality for all points(\(\infty \)) if and only if \(f \) is Möbius.
Henri Poincaré

Any two points can be joined by a straight line. (This line is unique given that the points are distinct)

1. Any straight line segment can be extended indefinitely in a straight line.
2. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
3. All right angles are congruent.

The shortest Y, the arc of circle orthogonal to \(|z_1| = 1 \), joining \(z_1 \) and \(z_2 \).

Proof. Every thing (LHS, RHS, circles orthogonal to \(|z_1| = 1 \)) are Möbius invariant.
So we can map \(z_1 \) to 0, \(z_2 \) to a positive number \(r > 0 \).

Consider any path \(s \) from 0 to \(r \), \(s(t) = x(t) + y(t)i \)

\[
\int_0^1 \frac{|s'(t)|}{1 - |s(t)|^2} dt \geq \int_0^1 \frac{|x'(t)|}{1 - x(t)^2} dt \geq \int_0^1 \frac{x'(t)}{1 - x(t)^2} dt \geq \log \frac{1 + x(1)}{1 - x(1)} \bigg|_{t=0} \log 1 - 1 \]

with equality reached exactly when \(y \equiv 0 \) (\(y \equiv 0 \)) and

\(x'(t) \parallel x(t) \), i.e. when \(s = [0, r] \), travelled once.

Hyperbolic geometry:

Points: points in \(\mathbb{D} \)
Lines: circular arcs or intervals orthogonal to \(|z| = 1 \).

Poincaré disk model of hyperbolic geometry:

Satisfies all Euclidean Axioms except for paralles:

1. Any two points can be joined by a straight line. (This line is unique given that the points are distinct)
2. Any straight line segment can be extended indefinitely in a straight line.
3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
4. All right angles are congruent.
2. Any straight line segment can be extended indefinitely in a straight line.
3. Given any straight line segment, a circle can be drawn having the segment as radius and one endpoint as center.
4. All right angles are congruent.
5. Through a point not on a given straight line, one and only one line can be drawn that never meets the given line.

Spherical geometry. Can be defined the same way on \mathbb{S}^2:

$$d_\mathbb{S}(x,y) = \sqrt{2(1 - \cos d)}$$
$$d_\mathbb{S}(z_1,z_2) = \inf \, d_\mathbb{S}(z)$$

Also satisfies all Euclidean Axioms except for parallels: lines are great circles, so there are no parallels!

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Euclidean</th>
<th>Spherical</th>
<th>Hyperbolic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infinitesimal length</td>
<td>$</td>
<td>dz</td>
<td>$</td>
</tr>
<tr>
<td>Oriented isometries</td>
<td>$e^{\theta z} + b$</td>
<td>rotations</td>
<td>conformal self-maps</td>
</tr>
<tr>
<td>Curvature</td>
<td>0</td>
<td>+1</td>
<td>-1</td>
</tr>
<tr>
<td>Geodesics</td>
<td>lines</td>
<td>great circles</td>
<td>circles \perp unit circle</td>
</tr>
<tr>
<td>Angles of triangle</td>
<td>π</td>
<td>$> \pi$</td>
<td>$< \pi$</td>
</tr>
</tbody>
</table>

$z^2 - x^2 - y^2 = 0$