Thursday, January 14, 2021 1:14 PM

Properties. 1) If the limit exists it is unique

provided 20 is a limit point of k

(
$$\forall \delta > 0$$
: β ($\exists \delta_0, \delta$) $\Lambda(k | \{ \exists \delta_0 \}) \neq \emptyset$).

2) $\lim_{t \to 20} (f(z) + g(z)) = \lim_{t \to 20} f(z) + \lim_{t \to 20} g(z)$ (it both exist)

3) $\lim_{t \to 20} (f(z) \times g(z)) = \lim_{t \to 20} f(z) \times \lim_{t \to 20} g(z)$ (it both exist)

4) $\lim_{t \to 20} f(z) = A \Leftrightarrow \lim_{t \to 20} \operatorname{Imm} Re f(z) = \operatorname{Re} A$

2) $\lim_{t \to 20} f(z) = A \Leftrightarrow \lim_{t \to 20} \operatorname{Imm} f(z) = \operatorname{Im} A$

5) $\lim_{t \to 20} f(z) = A \Rightarrow \lim_{t \to 20} \operatorname{Imm} f(z) = A$.

Proof. $|A| = |A| = |A| = A$.

Proof. $|A| = |A| = |A| = A$.

 $|A| = |A| = |A| = A$.

 $|A| = |A| = A$.

Important property: $K_1, K_2 \subset K$. Let $\lim_{z \to 2} f(z) = A$.

Then $\lim_{z \to 2} f(z) = \lim_{z \to 2} f(z) = A$.

Fixeron, 3500...

Corollary. $\lim_{z \to 2} f(z) = \lim_{z \to 2} f(z) = \lim_{$

Continuous functions.

As usual: fis continuous at 20 if lim f(2)=f(2,).

Remark All of this can be done at so, but we need to use spherical metric:

Important (and easy) observation: if z, ± 0 then $\lim_{z \to z_0} |z - z_0| = 0$ (=) $\lim_{z \to z_0} |z - z_0| = 1$ (=) $\lim_{z \to z_0} |z - z_0| = 0$.

Analytic functions

Def. f is (complex) differentiable at z_0 if $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = : f'(z) \text{ exists.}$

Equivalent definition: $f(z) = f(z_s) + (z - z_s) \varphi(z)$, where $\varphi(z)$ continuous at z_s , $\varphi(z_s) = f'(z_s)$.

Proof (of equivalency) (1) $\lim_{z \to \infty} \frac{f(z) - f(z_s)}{z - z_s} = \lim_{z \to z_s} \varphi(z) = f'(z_s)$ (1) Take $\varphi(z) : \begin{cases} \frac{f(z) - f(z_s)}{z - z_s}, & z \neq z_s \\ \frac{z - z_s}{z - z_s}, & z \neq z_s \end{cases}$

Remark. Differentiability at one point is not interesting.

Interesting: differentiability at every point of

some B(10,8) - some neighborhood of 2.

Thm. (the same as in Calculus).

I) If f'(z), g'(z) exist, then (f+g)'(z) = f'(z) + f(z) + f(